Lipschitz Continuity and Uniqueness

Kajsa_Stina
Messages
2
Reaction score
0
Dear all,

If a differential equation is Lipschitz continuous, then the solution is unique. But what about the implication in the other direction? I know that uniqueness does not imply Lipschitz continuity. But is there a counterexample? A differential equation that is not L-continuous, still the solution is unique?
I would really like to know the answer to this question.
Thank you all for your help,

Hendrik
 
Physics news on Phys.org
Now I have found an answer to my question:

http://archive.numdam.org/ARCHIVE/A..._1996_6_5_4_577_0/ AFST_1996_6_5_4_577_0.pdf

or, rather, Bernis and Qwang have found an answer. However, my differential equation is only of first degree, like

\dot K(t) = F(K(t))

One example would be F(K) = K^\alpha with 0 < \alpha < 1, then you get multiple solutions if you start from K = 0. But that's not surprising, because the differential equation is not Lipschitz continuous in K = 0. My question now would be: Is it possible to have a unique solution even if F were L-continuous in 0?

Thanks, many greetings,
Hendrik
 
Last edited by a moderator:
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top