Titans86
- 17
- 0
Homework Statement
\frac{dy}{dx} = \sqrt{xy^3} , y(0) = 4
The Attempt at a Solution
So;
\frac{dy}{dx} = x^{\frac{1}{2}}y^{\frac{3}{2}}<br /> <br /> \Rightarrow \int y^{-\frac{3}{2}}dy = \int x^{\frac{1}{2}}dx<br /> \Rightarrow -2y^{-\frac{1}{2}} = \frac{2}{3}x^{\frac{3}{2}} + C<br /> \Rightarrow y^{-\frac{1}{2}} = -\left(\frac{1}{3}x^{\frac{3}{2}} + \frac{1}{2}C\right)<br /> \Rightarrow y^{\frac{1}{2}} = -\left(\frac{1}{\frac{1}{3}x^{\frac{3}{2}} + \frac{1}{2}C}\right)<br /> \Rightarrow y = \frac{1}{(\frac{1}{3}x^{\frac{3}{2}} + \frac{1}{2}C)^2}<br />
Then Putting in the conditions mentioned above:
<br /> 4 = \frac{1}{(0 + \frac{1}{2}C)^2}<br /> \Rightarrow \frac{1}{4}C^2 = \frac{1}{4}<br /> \Rightarrow C = 1<br />
Yet my book shows C = \frac{3}{2}