A Local phase invariance of complex scalar field in curved spacetime

Click For Summary
The discussion centers on deriving the gauge field for a complex scalar field in curved spacetime, with an emphasis on how changes in the underlying spacetime may affect the gauge field and Lagrangian. The initial Lagrangian is presented, and substitutions are made to explore the implications of local phase invariance. There is uncertainty about how to simplify the resulting expression into a single field that incorporates additional terms. Participants express a desire for a deeper understanding of gauge fields and their relationship to the Klein-Gordon equation, particularly in the context of curved spacetime. The conversation highlights the complexities of scalar electrodynamics and the nature of gauge symmetries in this framework.
Tertius
Messages
57
Reaction score
10
TL;DR
Trying to derive the gauge field for the complex scalar field in curved spacetime.
I am stuck deriving the gauge field produced in curved spacetime for a complex scalar field. If the underlying spacetime changes, I would assume it would change the normal Lagrangian and the gauge field in the same way, so at first guess I would say the gauge field remains unchanged. If there is additional insight (or correction) here I would gladly read an article or book chapter if there are any suggestions.

Ok, here's where I am getting stuck. Starting with the complex scalar field Lagrangian (where covariant derivatives have been replaced with partials because it is a scalar field): $$ L = (g^{\mu \nu}d_\mu \phi d_\nu \phi^* -V(\phi, \phi^*)) \sqrt{-g}$$ We can then make the substitutions $$ \phi \rightarrow \phi e^{i\theta(x^\mu)} $$ and $$ \phi^* \rightarrow \phi^* e^{-i\theta(x^\mu)} $$ And the Lagrangian becomes $$ L = (g^{\mu \nu} (d_\mu \phi d^{i\theta} + i d_\mu \theta e^{i\theta} \phi)(d_\nu \phi^* e^{-i\theta} - i d_\nu \theta e^{-i\theta} \phi^*) - V(\phi, \phi^*)) \sqrt{-g} $$ After expanding, which I'm not sure is the best idea, we get $$ L = ( g^{\mu \nu}(d_\mu \phi d_\nu \phi^* - i d_\nu \theta d_\mu \phi~\phi^* + i d_\mu \theta d_\nu \phi^* ~ \phi + d_\mu \theta d_\nu \theta~ \phi \phi^*) - V(\phi, \phi^*)) \sqrt{-g} $$

At this point, I'm not sure how to make progress to distill this into a single field that takes all of those extra terms. Maybe there is a better route to determine the gauge field?
L=
 
Physics news on Phys.org
What is your goal? Do you want to "gauge" the Klein-Gordon field? Then you have to introduce a gauge field and you'll end up with "scalar electrodynamics" (in a curved background spacetime).
 
My main goal is a deeper understanding. Particularly about what gauge fields are, and how a curved background may or may not change their characteristics.
If the Klein Gordon equation is a general relativistic field theory, why would the gauge field be electrodynamics? Is that just because it would be a U(1) gauge symmetry?
I suppose the KG equation is of particular interest to me because every type of particle can be a solution to it.
I am also curious how/if a curved space time affects the resulting gauge field of a lagrangian.
 
The Poynting vector is a definition, that is supposed to represent the energy flow at each point. Unfortunately, the only observable effect caused by the Poynting vector is through the energy variation in a volume subject to an energy flux through its surface, that is, the Poynting theorem. As a curl could be added to the Poynting vector without changing the Poynting theorem, it can not be decided by EM only that this should be the actual flow of energy at each point. Feynman, commenting...