A Local phase invariance of complex scalar field in curved spacetime

Tertius
Messages
57
Reaction score
10
TL;DR Summary
Trying to derive the gauge field for the complex scalar field in curved spacetime.
I am stuck deriving the gauge field produced in curved spacetime for a complex scalar field. If the underlying spacetime changes, I would assume it would change the normal Lagrangian and the gauge field in the same way, so at first guess I would say the gauge field remains unchanged. If there is additional insight (or correction) here I would gladly read an article or book chapter if there are any suggestions.

Ok, here's where I am getting stuck. Starting with the complex scalar field Lagrangian (where covariant derivatives have been replaced with partials because it is a scalar field): $$ L = (g^{\mu \nu}d_\mu \phi d_\nu \phi^* -V(\phi, \phi^*)) \sqrt{-g}$$ We can then make the substitutions $$ \phi \rightarrow \phi e^{i\theta(x^\mu)} $$ and $$ \phi^* \rightarrow \phi^* e^{-i\theta(x^\mu)} $$ And the Lagrangian becomes $$ L = (g^{\mu \nu} (d_\mu \phi d^{i\theta} + i d_\mu \theta e^{i\theta} \phi)(d_\nu \phi^* e^{-i\theta} - i d_\nu \theta e^{-i\theta} \phi^*) - V(\phi, \phi^*)) \sqrt{-g} $$ After expanding, which I'm not sure is the best idea, we get $$ L = ( g^{\mu \nu}(d_\mu \phi d_\nu \phi^* - i d_\nu \theta d_\mu \phi~\phi^* + i d_\mu \theta d_\nu \phi^* ~ \phi + d_\mu \theta d_\nu \theta~ \phi \phi^*) - V(\phi, \phi^*)) \sqrt{-g} $$

At this point, I'm not sure how to make progress to distill this into a single field that takes all of those extra terms. Maybe there is a better route to determine the gauge field?
L=
 
Physics news on Phys.org
What is your goal? Do you want to "gauge" the Klein-Gordon field? Then you have to introduce a gauge field and you'll end up with "scalar electrodynamics" (in a curved background spacetime).
 
My main goal is a deeper understanding. Particularly about what gauge fields are, and how a curved background may or may not change their characteristics.
If the Klein Gordon equation is a general relativistic field theory, why would the gauge field be electrodynamics? Is that just because it would be a U(1) gauge symmetry?
I suppose the KG equation is of particular interest to me because every type of particle can be a solution to it.
I am also curious how/if a curved space time affects the resulting gauge field of a lagrangian.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top