Log a 3.5: Finding the Solution using Logarithmic Rules

  • Thread starter Thread starter JasonX
  • Start date Start date
  • Tags Tags
    Log
JasonX
Messages
10
Reaction score
0
[SOLVED] log a 3.5= ?

given log a 2= 1.8301 and log a 7= 5.0999

what is log a 3.5=?

Thanks!
 
Physics news on Phys.org
Why does the thread name say solved?

Anyway, Please show us some working, we can't help you otherwise. All I'm going to say is to remember some log identities. You must see a relation between 3.5, 7 and 2.
 
This may come in handy..

log(a/b)=log(a)-log(b)
 
benjyk said:
This may come in handy..

log(a/b)=log(a)-log(b)

*sigh* Well stuff the forum regulations hey?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top