MHB Logarithm and Exponent Question

zekea
Messages
3
Reaction score
0
I'm confused on this question.

The equation m log p (n) = q can be written in exponential form as..
The answer on the work sheet is p^(q/m)=n but shouldn't it be P^(qm) = n ? According to the power rule? My teacher explained this by writing down for me log p (n) = q / m but I'm confused here
 
Mathematics news on Phys.org
zekea said:
I'm confused on this question.

The equation m log p (n) = q can be written in exponential form as..
The answer on the work sheet is p^(q/m)=n but shouldn't it be P^(qm) = n ? According to the power rule? My teacher explained this by writing down for me log p (n) = q / m but I'm confused here

The definition of the logarithm function id the following:
If $b$ is any number such that $b>0$ and $b\neq 1$ and $x>0$ then,
$$y=\log_b x \ \ \text{ is equivalent to } \ \ b^y=x$$ We have the the equation $q=m\log_p n$.

Dividing both sides by $m$ we get $$\frac{q}{m}=\frac{m\log_p n}{m} \Rightarrow \frac{q}{m}=\log_p n$$

Therefore from the definition for $y=\frac{q}{m}$, $b=p$ and $x=n$ we get $$ p^{\frac{q}{m}}=n$$
 
Last edited by a moderator:
Okay this is what my teacher did but something is confusing me.

Based on Khans' video here https://www.youtube.com/watch?v=Pb9V374iOas
Skip to 4:00
Basically according to the power rule you have Log a (c)^d = bd . He brought the d down to the other side.
So in exp form A^(bd) = C^d so shouldn't the answer be p^(mn) = n rather than P^(q/m) = n ?
 
Using that rule we have the following:
$$q=m\log_p n\Rightarrow q=\log_p n^m$$

Then from the definition we get $p^q=n^m$.

To solve for $n$ we do the following: $$n^m=p^q \Rightarrow \left (n^m\right )^{\frac{1}{m}}=\left (p^q\right )^{\frac{1}{m}} \Rightarrow n^{\frac{m}{m}}=p^{\frac{q}{m}} \Rightarrow n=p^{\frac{q}{m}}$$
 
zekea said:
Okay this is what my teacher did but something is confusing me.

Based on Khans' video here https://www.youtube.com/watch?v=Pb9V374iOas
Skip to 4:00
Basically according to the power rule you have Log a (c)^d = bd . He brought the d down to the other side.
So in exp form A^(bd) = C^d so shouldn't the answer be p^(mn) = n rather than P^(q/m) = n ?

If I was given:

$$\log_a\left(c^d\right)=bd$$

I would first use the identity $\log_a\left(b^c\right)=c\cdot\log_a(b)$ to write:

$$d\cdot\log_a\left(c\right)=bd$$

Next, divide through by $d$:

$$\log_a\left(c\right)=b$$

Finally, convert from logarithmic to exponential form:

$$c=a^b$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top