Logarithm + Nepper's number Exercise

  • Context: MHB 
  • Thread starter Thread starter Velo
  • Start date Start date
  • Tags Tags
    Exercise Logarithm
Click For Summary
SUMMARY

The discussion focuses on solving the equation 2e^(-x) = 3e^(0.1x). The correct approach involves converting the equation into logarithmic form after isolating the exponential terms. The final solution is x = (ln(2/3))/1.1, derived from the steps of manipulating the equation and applying logarithmic properties. Participants also shared tips on using LaTeX for mathematical expressions, enhancing clarity in communication.

PREREQUISITES
  • Understanding of exponential functions and their properties
  • Familiarity with logarithmic conversions and properties
  • Basic knowledge of LaTeX for formatting mathematical expressions
  • Ability to manipulate algebraic equations
NEXT STEPS
  • Study the properties of logarithms, particularly the change of base formula
  • Practice solving exponential equations with varying coefficients
  • Learn advanced LaTeX techniques for mathematical typesetting
  • Explore applications of logarithmic functions in real-world scenarios
USEFUL FOR

Students, educators, and anyone interested in mastering algebraic equations involving exponential and logarithmic functions.

Velo
Messages
17
Reaction score
0
" Solve the equation:

2e^(-x) = 3e^(0.1x) "

I've been fiddling around with this and I have no idea what I'm supposed to do. I know the final answer should be something like:
x = [(2/3)log e] / 1,1

The only step I've managed to do was:
(2/3) x e^(-x) = e^(0.1x)

But after that, I don't know how to get the x out of the exponential.. Help would be appreciated :')
 
Physics news on Phys.org
We are given to solve:

$$2e^{-x}=3e^{0.1x}$$

My first step would be to multiply though by $e^x\ne0$ to get:

$$2=3e^{1.1x}$$

Now divide though by 3:

$$\frac{2}{3}=e^{1.1x}$$

Next, what do you get when converting from exponential to logarithmic form?
 
Hm...

1.1x = log e ^ (2/3) <=>
x = [log e ^ (2/3)]/1.1 <=>
x = [(2/3) log e]/1.1

Which was the solution :o Is that right? Also, sorry, I'm having trouble using the latex thingy ><
 
Velo said:
Hm...

1.1x = log e ^ (2/3) <=>
x = [log e ^ (2/3)]/1.1 <=>
x = [(2/3) log e]/1.1

Which was the solution :o Is that right? Also, sorry, I'm having trouble using the latex thingy ><

Let's go back to:

$$\frac{2}{3}=e^{1.1x}$$

Now recall that:

$$a=b^c\implies c=\log_b(a)$$

And so we may write:

$$1.1x=\ln\left(\frac{2}{3}\right)$$

And then on dividing though by 1.1, we get:

$$x=\frac{\ln\left(\dfrac{2}{3}\right)}{1.1}$$

To use $\LaTeX$, you need to enclose your code with tags. The simplest way is to click the $\Sigma$ button on our toolbar, and then the cursor will be located in between the resulting $$$$ tags, and you can add your code there. You will find most symbols/commands you need to the right of the editor, in the "Quick $\LaTeX$" tool, and you can get quick previews of your code in our "$\LaTeX$ Live Preview" tool.
 
Ohhh, I get it now.. I read the book wrong too :') The solution had $$ \log_e(\frac{2}{3}) $$ and not $$\log(\frac{2}{3})$$.. I spent so much time wondering where that log had come from :') I tried redoing that exercise and the next in my notebook and I'm doing alright now x3 Thank you very much! :D
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 27 ·
Replies
27
Views
872
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K