MHB Logarithmic Equation solve log_(3x)3+log_(x/3)3=5/12

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Logarithmic
AI Thread Summary
To solve the logarithmic equation log_(3x)3 + log_(x/3)3 = 5/12, it's suggested to convert both logarithms to the same base, specifically base 3x. By letting y = log_(x/3)(3), the relationship x^y = 3^(y+1) is established, leading to y = log_(3x)(3^(2y+1)). This results in a transformed equation where y is expressed in terms of log_(3x)(3), ultimately simplifying to y(1 + y/(1 - 2y)) = 5/12. The final step involves solving for y and subsequently for x.
Yankel
Messages
390
Reaction score
0
Dear all,

I wish to solve the following logarithmic equation:

\[log_{3x}3+log_{\frac{x}{3}}3=\frac{5}{12}\]

My intuition was to start with changing the base of both logarithms to 10 (or any other number), but couldn't continue from there. Can you assist please ? Is there a meaning to the fact that both bases involves 3 in them ?

Thank you in advance.
 
Mathematics news on Phys.org
Yes, you certainly want the two logarithms to the same base but there is nothing special about base 10. Since one logarithm is already to base "3x" I would be inclined to change the other to base 3x also. If y= log_{x/3}(3) then 3= (x/3)^y= x^y/3^y. So x^y= 3^{y+1} and then (3x)^y= 3^yx^y= 3^{2y+ 1}. Taking the logarithm, base 3x, of both sides, y= log_{3x}(3^{2y+1})= (2y+1)log_{3x}(3). Solving that for y, (1- 2log_{3x}(3))y= log_{3x}(3) so y= log_{x/3}(3)= \frac{log_{3x}(3)}{1- 2log_{3x}(3)}

The original equation, log_{3x}(3)+ log_{x/3}(3)= \frac{5}{12} becomes log_{3x}(3)\left(1+ \frac{log_{3x}(3)}{1-2log_{3x}(3)}\right)= \frac{5}{12}.

To simplify, let y= log_{3x}(3) so the equation is y\left(1+ \frac{y}{1- 2y}\right)= \frac{5}{12}. Solve that for y then solve log_{3x}(3)= y for x.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top