Think about it in terms of the geometry of the situtation. If you have a vector in ##\mathbb{R}^3##, it is perpendicular to an infinite number of planes, all with the same orientation (and therefore parallel). A given value of d identifies one and only one of these planes.
If d is unknown, then yes, we have a family of parallel planes.
For the algebra, let's say we know a vector N = <a, b, c> that is perpendicular to the plane, and a point ##P_0(x_0, y_0, z_0)## that is on the plane. Position the vector so that its tail is at P
0, as in the drawing below.
Take an arbitrary point on the plane P(x, y, z) that is different from P
0 and form the vector ##\vec{P_0P} = <x - x_0, y - y_0, z - z_0>##. Since ##\vec{P_0P}## and ##\vec{N}## are perpendicular, their dot product must be zero. IOW, ##\vec{P_0P} \cdot \vec{N} = 0##, so ##(x - x_0) \cdot a + (y - y_0) \cdot b + (z - z_0) \cdot c = 0##. The equation ax + by + cz = d comes directly from this dot product.
View attachment 91587