Petar Mali
- 283
- 0
x'=a_{11}x+a_{12}y+a_{13}z+a_{14}t
y'=a_{21}x+a_{22}y+a_{23}z+a_{24}t
z'=a_{31}x+a_{32}y+a_{33}z+a_{34}t
t'=a_{41}x+a_{42}y+a_{43}z+a_{44}t
\vec{u}=u\vec{e}_x
Coefficients a_{nm}=a_{nm}(u)
Why I suppose that coefficients are function only of velocity u?
Inverse relations
x=a_{11}'x'+a_{12}'y'+a_{13}'z'+a_{14}'t'
y=a_{21}'x'+a_{22}'y'+a_{23}'z'+a_{24}'t'
z=a_{31}'x'+a_{32}'y'+a_{33}'z'+a_{34}'t'
t=a_{41}'x'+a_{42}'y'+a_{43}'z'+a_{44}'t'
a_{nm}'(u)=a_{nm}(-u)
Equations of transformations are linear (time and space are homogeneous).
That means from linearity of transformations \Rightarrow time and space are homogeneous?
Why now I can say
y'=a_{22}y
z'=a_{33}z
t'=a_{41}x+a_{44}t?
Thanks for your answer!
y'=a_{21}x+a_{22}y+a_{23}z+a_{24}t
z'=a_{31}x+a_{32}y+a_{33}z+a_{34}t
t'=a_{41}x+a_{42}y+a_{43}z+a_{44}t
\vec{u}=u\vec{e}_x
Coefficients a_{nm}=a_{nm}(u)
Why I suppose that coefficients are function only of velocity u?
Inverse relations
x=a_{11}'x'+a_{12}'y'+a_{13}'z'+a_{14}'t'
y=a_{21}'x'+a_{22}'y'+a_{23}'z'+a_{24}'t'
z=a_{31}'x'+a_{32}'y'+a_{33}'z'+a_{34}'t'
t=a_{41}'x'+a_{42}'y'+a_{43}'z'+a_{44}'t'
a_{nm}'(u)=a_{nm}(-u)
Equations of transformations are linear (time and space are homogeneous).
That means from linearity of transformations \Rightarrow time and space are homogeneous?
Why now I can say
y'=a_{22}y
z'=a_{33}z
t'=a_{41}x+a_{44}t?
Thanks for your answer!