Lorentz Transformations in general

Leonhard
Messages
1
Reaction score
0
Hi, I've been breaking my head on the matrix form of the lorentz transformation between one set of coordinates in one inertial frame (t,x^1,x^2,x^3) and what those coordinates will be in another inertial frame (t',x'^2,x'^2,x'^3).

Now I understand that if have a set of coordinates in one inertial frame, and we then those coordinates in an inertial frame with a boost along the x-axis, the transformation matrix between those two coordinates will be

L(\beta \hat{x}) = \left ( \begin{matrix} \gamma & -\beta\gamma & 0 & 0 \\ -\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{matrix} \right )

A boost along the y-axis and z-axis are given by

L(\beta \hat{y}) = \left ( \begin{matrix} \gamma & 0 & -\beta\gamma & 0 \\ 0 & 1 & 0 & 0 \\ -\beta\gamma & 0 & \gamma & 0 \\ 0 & 0 & 0 & 1 \end{matrix} \right )

and

L(\beta \hat{z}) = \left ( \begin{matrix} \gamma & 0 & 0 & -\beta\gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\beta\gamma & 0 & 0 & \gamma \end{matrix} \right )

Now I understand that, in general, a transformation from one set of coordinates to another is given by

\tilde{x}^\mu = \Lambda^\mu_\nu x^{\nu}

Where \Lambda is the lorentz transformation between the two frames of references, but I'm not sure how to derive it. I've been told that a general boost (\beta_x, \beta_y, \beta_z) is given by

L(\beta_x \hat{x} + \beta_y \hat{y} + \beta_z \hat{z}) = \left ( \begin{matrix} \gamma & -\beta_x\gamma & -\beta_y\gamma & -\beta_z\gamma \\ -\beta_x\gamma & 1 + (\gamma - 1)\frac{\beta^2_x}{\beta^2} & (\gamma - 1) \frac{\beta_x\beta_y}{\beta^2} & (\gamma -1)\frac{\beta_x \beta_z}{\beta^2} \\ -\beta_y\gamma & (\gamma - 1)\frac{\beta_y}{\beta_x} & 1 + (\gamma - 1)\frac{\beta^2_y}{\beta^2} & (\gamma - 1)\frac{\beta_y\beta_z}{\beta^2} \\ -\beta_z\gamma & (\gamma - 1)\frac{\beta_z\beta_x}{\beta^2} & (\gamma - 1)\frac{\beta_z\beta_y}{\beta^2} & 1 + (\gamma - 1)\frac{\beta^2_z}{\beta^2} \end{matrix} \right )

Is it simple derived by multiplying the transformation matrices?

L(\beta_x \hat{x} + \beta_y \hat{y} + \beta_z \hat{z}) = L(\beta_x \hat{x})L(\beta_y \hat{y})L(\beta_z \hat{z})
 
Physics news on Phys.org
Leonhard, You're going to shoot me, but it's obvious by inspection! :smile:

You have the transformations along the three axes. Just use the fact that Ltt is a scalar under a spatial rotation, Lti and Lit are vectors under rotation, and the space-space part Lij is a symmetric tensor. All you have to do is think of two vectors and a tensor that match the cases you are given. This will uniquely determine the solution.

Let β = (βx, βy, βz) = β u where u is a unit vector. Clearly Ltt = γ and both vectors are Lti = - β γ. The only part that takes some thought is the space-space part. It is Lij = I + (γ - 1) u u. Write out the nine components of that tensor in terms of βx, βy and βz, and you have the result.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top