latentcorpse
- 1,411
- 0
hi again, I'm trying to show that \mathbf{B} = \nabla \times \mathbf{A} where \mathbf{A} is the magnetic potential given by:
\mathbf{A(r)}=\frac{\mu_0}{4 \pi} \int dV' \frac{\mathbf{J(r')}}{|\mathbf{r-r'}|}
i deduced that since \nabla=(\frac{\partial}{\partial{r_1}},\frac{\partial}{\partial{r_2}},\frac{\partial}{\partial{r_3}}) it only acts on r terms and so
\nabla \times \mathbf{A}=\frac{\mu_0}{4 \pi} \int dV' \mathbf{J(r')} ( \nabla \times \frac{1}{|\mathbf{r-r'}|} )
i can't figure out how to compute that curl - it should be fairly elementary, no?
\mathbf{A(r)}=\frac{\mu_0}{4 \pi} \int dV' \frac{\mathbf{J(r')}}{|\mathbf{r-r'}|}
i deduced that since \nabla=(\frac{\partial}{\partial{r_1}},\frac{\partial}{\partial{r_2}},\frac{\partial}{\partial{r_3}}) it only acts on r terms and so
\nabla \times \mathbf{A}=\frac{\mu_0}{4 \pi} \int dV' \mathbf{J(r')} ( \nabla \times \frac{1}{|\mathbf{r-r'}|} )
i can't figure out how to compute that curl - it should be fairly elementary, no?