Magnetising a hard magnetic material

AI Thread Summary
Magnetizing hard magnetic materials like steel using an AC source is not feasible due to the oscillating magnetic field produced, which averages to zero. This means that magnetization cannot exceed the material's remanence. The frequency of the AC current can further reduce effective magnetization, as ferromagnetic materials require time to respond to changes in magnetic fields. The process of magnetization is non-equilibrium and can take seconds to stabilize, making it impractical for AC applications. Overall, attempting this method could pose safety risks.
Kenny Low
Messages
1
Reaction score
0
Is it possible to magnetize steel (hard magnetic material) with an ac source?
 
Physics news on Phys.org
I'm quite certain it can not. An AC current makes an oscillating B-field. The time-averaged value of the B-field is therefore, zero. Hence, no magnetization greater than the remanence can be achieved, and depending on the frequency (keep in mind that the magnetization of a ferromagnet is a highly non-equilibrium process and time constants for changes in magnetization can be of the order of seconds, even at normal temperatures) it could be significantly smaller.
 
This sounds like a very dangerous home-made experiment waiting to happen :biggrin:
 
Thread 'Motional EMF in Faraday disc, co-rotating magnet axial mean flux'
So here is the motional EMF formula. Now I understand the standard Faraday paradox that an axis symmetric field source (like a speaker motor ring magnet) has a magnetic field that is frame invariant under rotation around axis of symmetry. The field is static whether you rotate the magnet or not. So far so good. What puzzles me is this , there is a term average magnetic flux or "azimuthal mean" , this term describes the average magnetic field through the area swept by the rotating Faraday...
It may be shown from the equations of electromagnetism, by James Clerk Maxwell in the 1860’s, that the speed of light in the vacuum of free space is related to electric permittivity (ϵ) and magnetic permeability (μ) by the equation: c=1/√( μ ϵ ) . This value is a constant for the vacuum of free space and is independent of the motion of the observer. It was this fact, in part, that led Albert Einstein to Special Relativity.
Back
Top