Dustinsfl
- 2,217
- 5
\begin{bmatrix}<br />
1 & 1 & 0\\ <br />
1 & 1 & 0\\ <br />
0 & 0 & \alpha<br />
\end{bmatrix} and det(A-\lambda I)=\lambda(\alpha-\lambda)(\lambda-2)=0
Therefore, \lambda_1=0, \lambda_2=\alpha, and \lambda_3=2.
In order to make this matrix defective, I need to make the left two column vectors dependent\begin{bmatrix}<br /> 1-\alpha & 1 & 0\\ <br /> 1 & 1-\alpha & 0\\ <br /> 0 & 0 & 0<br /> \end{bmatrix}.
Is there an easy way to find or determine if this can be done for a given matrix?
Therefore, \lambda_1=0, \lambda_2=\alpha, and \lambda_3=2.
In order to make this matrix defective, I need to make the left two column vectors dependent\begin{bmatrix}<br /> 1-\alpha & 1 & 0\\ <br /> 1 & 1-\alpha & 0\\ <br /> 0 & 0 & 0<br /> \end{bmatrix}.
Is there an easy way to find or determine if this can be done for a given matrix?