Making Dot Products Tangible for Motivating Students

  • Thread starter Thread starter matqkks
  • Start date Start date
  • Tags Tags
    Dot students
matqkks
Messages
280
Reaction score
5
How can I make something like dot products tangible? Are there real life examples where dot products are used? This is for motivating students. Aware that we can test for orthogonality.
Thanks in advance for any replies. Really appreciate anyone taking time out to answer these questions.
 
Mathematics news on Phys.org
I usually define it in terms of projections, that is the most tangible and powerful picture in my opinion. With that I mean that I define it as the length of the first vectors projection on the other vector times the other vectors length. Projections are extremely useful and very intuitive, you can come up with some real life examples yourself but if you want I could give examples.
 
you can project a vector onto another vector (find the "shadow" cast onto a vector by another vector), you can find the angle between vectors (A.B = ABcos(theta)), and work is defined using the dot product. also, the definition of flux is defined using the dot product (vector field dotted with surface vector.

These are just a few of the many applications of the dot product.

And of course the dot product is zero if two vectors are orthogonal, since A.B = ABcos(theta), as you mentioned.
 
matqkks said:
How can I make something like dot products tangible? Are there real life examples where dot products are used? This is for motivating students. Aware that we can test for orthogonality.
Thanks in advance for any replies. Really appreciate anyone taking time out to answer these questions.

Video games is something they will be able to relate to. Some applications include hit-tests (projection on to a plane using dot product), shadows, lighting (normal maps and the lighting they produce in modern games).

As above posters have mentioned there are tonnes of applications. Projections in general are used everywhere from statistics to engineering to everything in between.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top