andrien said:
if you write flnm then k1-k2 will appear as k2-k1,k2-k3 as k3-k2 and so.So an extra minus sign will appear which combined with flnm give flmn and you get the original formula.
This is not correct. You will simply reverse two of the k's, The third will remain unchanged. In other words for instance, swapping k_2 with k_3,
(k_1 - k_2)_{\sigma} \rightarrow (k_1 - k_3)_{\sigma}
(k_2 - k_3)_{\tau} \rightarrow (k_3 - k_2)_{\tau}
(k_3 - k_1)_{\nu} \rightarrow (k_2 - k_1)_{\nu}
So you won't get the minus sign you need unless you also swap the indices on V.
Here is what I think about the 3 gluon Feynman diagram and rules.
In the 3 gluon diagram, since all arrows point inward, there are no asymmetries related to the direction of momentum. For this reason, if you turn the diagram 120 degrees, the equation you get from applying the Feynman rules should not change it's value, nor if you turn it 240 degrees. Also, if you hold the diagram up to a strong light and read it from the back of the page, again, you should get the same equation. This means that not only will the indices on f suffer a transposition, but so will the momenta and so will the indices on V. However, if the equation is to be totally symmetric and f is to be totally antisymmetric, the only possibility is that V also be totally antisymmetric. What's more, if you permute the indices of V and calculate the result directly using eqn (15.68) and remembering to impose the momentum changes, you also find that V is totally antisymmetric. That is why figures 14.4(b) and 14.5 are not contradictory. It doesn't matter whether you traverse the gluon lines in clockwise or counterclockwise direction, but it does matter that you do the same for f and for the momenta, and for V. All three things must be done together. When this principle is applied to diagram 15.17(b), you get eqn (17.125) exactly as it is written, with no need to alter the indices on f.
Here where I think the problem lies. If eqn (15.128) is changed to
N^{\mu}(p', p, k) = V^{\mu\tau\nu}(p - p', p' - k, k - p)\gamma_{\tau}(\not{k} + m)\gamma_{\nu}
then the whole problem may be solved. I will not know for sure until I finish deriving the rest of the proof down to eqn (15.90b) on page 362. One thing is for sure, eqn (15.128) cannot stand as it is in the book.
This is not an entirely satisfactory solution. Why not simply leave V unchanged from eqn (17.125) when formulating eqn (15.128) and drop the minus sign in (15.129)? And why mention eqn (15.66) if it isn't being invoked?
None the less, for the time being, I consider this a tentative solution to the problem and I thank you for your input.