Manipulating Light Wavelengths: Can Light Be Shortened?

  • Context: Undergrad 
  • Thread starter Thread starter silverado408
  • Start date Start date
  • Tags Tags
    Light Wavelength
Click For Summary
SUMMARY

The discussion centers on the feasibility of shortening the wavelength of light emitted from a mercury vapor bulb. Participants confirm that current technology does not allow for practical wavelength shortening, with some methods like chemical dye lasers and photonic band gap crystals being mentioned as limited solutions. The conversation highlights that while the frequency of light can theoretically be altered through energy fields or materials with higher refractive indices, practical applications remain challenging. Additionally, safety concerns regarding UV emissions from mercury bulbs are emphasized.

PREREQUISITES
  • Understanding of light wavelength and frequency concepts
  • Familiarity with mercury vapor bulbs and their emission spectra
  • Knowledge of photonic band gap crystals and their applications
  • Basic principles of the Doppler effect in relation to light
NEXT STEPS
  • Research the properties and applications of chemical dye lasers
  • Explore the use of photonic band gap crystals in light manipulation
  • Investigate safety measures for working with UV light sources
  • Learn about frequency doubling techniques in laser technology
USEFUL FOR

Physicists, optical engineers, and anyone interested in advanced light manipulation techniques and safety considerations when working with high-energy light sources.

silverado408
Messages
4
Reaction score
0
Hello, I am new to this forum and in no way a physics major. My question for you guys is "can the wavelength of light photons being emitted from a bulb be shortened". If it can, how? Please don't get too over my head. I am basically trying to find the best or easiest way to shorten the wavelength coming from a mercury vapor bulb and then focus the light toward something.
 
Science news on Phys.org
Changing the wavelength of light in the way you're hoping to do, is not practical with today's technology. The only instances I know are -

the light from chemical dye lasers can be tuned very slightly,
photonic band gap crystals can 'split' a UV photon into two green ones.

If the spectrum of your lamp is not suitable for your purpose, there's not much you can do about it.

Of course, there may have been some kind of breakthrough I don't know about yet...
 
Crystals such as ones in laser pointers in a dpss system could achieve this. http://en.wikipedia.org/wiki/Neodymium_doped_yttrium_orthvanadate
This is a simple crystal that takes the infrared wavelength of 1064nm and cuts it in half to 532nm which is green light.
 
Last edited by a moderator:
Theoretically, any energy field - e. g., gravitational or electromagnetic - can change the frequency of light passing through it. If the energy potential increases with light passage the frequency diminishes, and vice versa.

In practice, this may be difficult. Mentz114 gives two good examples. Would increasing the pressure in a mercury bulb alter its frequency?
 
silverado408 said:
Hello, I am new to this forum and in no way a physics major. My question for you guys is "can the wavelength of light photons being emitted from a bulb be shortened". If it can, how? Please don't get too over my head. I am basically trying to find the best or easiest way to shorten the wavelength coming from a mercury vapor bulb and then focus the light toward something.

Er... I think everyone seems to have missed something here.

Typically, light coming from Hg lamp has several wavelengths/frequencies. In intro physics, we often give a Hg discharge lamp in labs to study emission spectra using a diffraction grating and a spectrometer. You'll see several distinct emission lines.

So what does the OP means by "shortening THE wavelength" here, since there are several? If one has the right set of filters, one can select one wavelength after another and another, etc. So to me, this question is puzzling.

Zz.
 
silverado408 said:
Hello, I am new to this forum and in no way a physics major. My question for you guys is "can the wavelength of light photons being emitted from a bulb be shortened". If it can, how? Please don't get too over my head. I am basically trying to find the best or easiest way to shorten the wavelength coming from a mercury vapor bulb and then focus the light toward something.
If you mean to shorten any wavelength of light emitted by a lamp, another (very uneasy) way is to approach the lamp at high speed to the detecting apparatus (Doppler effect).
 
silverado408 said:
Hello, I am new to this forum and in no way a physics major. My question for you guys is "can the wavelength of light photons being emitted from a bulb be shortened". If it can, how? Please don't get too over my head. I am basically trying to find the best or easiest way to shorten the wavelength coming from a mercury vapor bulb and then focus the light toward something.

Other posters have pointed out several obvious issues, let me add a few more.

A wavelength, which corresponds to momentum, can be shortened by passing into a material with a higher refractive index. A frequency, which corresponds to energy, cannot be raised without adding energy into the system: frequency doublers, for example.

If you want to extract out the short-wavelength lines from a Hg bulb, I advise caution: the lines are in the UV and I know of a technician that gave himself a sunburn on his corneas. No permanent damage, but a painful night was spent in the hospital.
 
Basically, I was wondering if it was possible to take the light emitted from an Hg bulb and shorten the wavelength below 180 NM. Or find some sort of device that can emit very low wavelength light.
 
Don't fluorescent tubes accomplish this? The EM freqs (UV) emitted from the terminals is not the same as that which ultimately reaches our eyes (visible light).

Actually, that's exactly backwards to what the OP asked...
 
  • #10
silverado408 said:
Basically, I was wondering if it was possible to take the light emitted from an Hg bulb and shorten the wavelength below 180 NM. Or find some sort of device that can emit very low wavelength light.
When you say low wavelength, you mean short wavelength, right? You want to raise the frequency, right?
 
  • #11
Do you basically want a UV or an x-ray source?
 
  • #12
silverado408 said:
Basically, I was wondering if it was possible to take the light emitted from an Hg bulb and shorten the wavelength below 180 NM. Or find some sort of device that can emit very low wavelength light.

Here's the standard spectrum from a Hg bulb:

http://www.olympusmicro.com/primer/anatomy/sources.html

(near the bottom)

As you can see, there's not much below 300 nm. Here's the spectrum of a deuterium source:

http://www.answers.com/topic/deuterium-arc-lamp

Which also peters out below 200 nm. I don't know of any common source that has substantial emission below 200 nm, and you would need to be working in a vacuum as the air will absorb the light.

AFAIK, there is no common technology to frequency double 360 nm light to 180 nm. One can frequency quadruple Nd:YAG light to 266 nm using standard equipment.
 
  • #13
skywalker09 said:
Do you basically want a UV or an x-ray source?

I guess so, however, X-rays just sound dangerous. Are there really any short wavelength/ X-ray sources available for reletivly cheap? Like a few hundred dollars?
 
  • #14
DaveC426913 said:
When you say low wavelength, you mean short wavelength, right? You want to raise the frequency, right?

Yes, you are right. I meant short.
 

Similar threads

  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
Replies
3
Views
745
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 17 ·
Replies
17
Views
4K