Many Body bogoliubov transformation

Hl3
Messages
1
Reaction score
0

Homework Statement


The occupation of each single-particle state with wave vector k =/= 0 in the ground state is given by nk = <0|bkbk|0>
where b and b† are bogoliubov transformaition. Find an expression for nk.

bk = cosh(θ)ak - sinh(θ) a-k
bk = cosh(θ)ak - sinh(θ)a-k

Homework Equations

The Attempt at a Solution


I don't fully understand the notaition with zeros. I believe nk would equal to 0, however question asks for the expression for nk. thnaks in advance
 
Physics news on Phys.org
No, it is not. The state ##|0>## is the vacuum of the annihilation operators ##a_k##. That is,
$$a_k|0>=0$$ for all ##k##, but
$$b_k|0>\neq 0$$ (unless ##\theta =0##).
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top