jackmell
- 1,806
- 54
When we map the algebraic function, w(z), to a Riemann surface we essentially create a new "Riemann" coordinate system over a surface that is called the "algebraic function's Riemann surface".
This mapping allows one to create single-valued functions, f(z,w), of the coordinate points over this surface, including the underlying algebraic function f(z,w)=w, that are single-valued, analytic functions except at special points called singular points.
May I ask what exactly is this type of mapping called?
This mapping allows one to create single-valued functions, f(z,w), of the coordinate points over this surface, including the underlying algebraic function f(z,w)=w, that are single-valued, analytic functions except at special points called singular points.
May I ask what exactly is this type of mapping called?
Last edited: