MHB Maria's question at Yahoo Answers regarding optimization

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Optimization
AI Thread Summary
To maximize the total area enclosed by a square and a circle formed from a 50 m wire, none of the wire should be allocated to the square, meaning S should be 0 m. Conversely, to minimize the total area, approximately 31.83 m of the wire should be used for the square, calculated as S = 200/(4 + π). The area functions for both shapes were derived and analyzed using quadratic equations and calculus methods. The conclusion emphasizes that a circle encloses more area per perimeter than a square. This optimization problem illustrates key principles in calculus related to maximizing and minimizing areas.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

OPTIMIZATION PROBLEM?

A piece of wire 50 m long is cut into two pieces. One piece is bent into a square and the other is bent into a circle

(a) How much of the wire should go to the square to maximize the total area enclosed by both figures?

(b) How much of the wire should go to the square to minimize the total area enclosed by both figures?

Here is a link to the question:

OPTIMIZATION PROBLEM? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Maria,

Let's let the length of the wire be $L$, and the let $S$ be the portion of the wire used to form the square, and let the portion of the wire that is the circumference of the circle be $C$

Each side of the square will be $\dfrac{S}{4}$, and so the area of the square is:

$\displaystyle A_S=\left(\frac{S}{4} \right)^2=\frac{S^2}{16}$

The area of the circle is:

$A_C=\pi r^2$

Now, the circumference of the circle is $C$ and so the radius of the circle is:

$\displaystyle r=\frac{C}{2\pi}$

hence the area of the circle in terms of $L$ and $C$ is:

$\displaystyle A_C=\pi\left(\frac{C}{2\pi} \right)^2=\frac{C^2}{4\pi}$

Adding the two areas, we find the total area of the two shapes is:

$\displaystyle A=A_S+A_C=\frac{S^2}{16}+\frac{C^2}{4\pi}$

To find the absolute extrema, we first observe we must have:

$0\le S\le L$ which also means $0\le C\le L$

So, we will find the local extrema within this interval, and also look at the area at the end-points of the interval as possible absolute extrema as well.

There are 3 ways to find the local extremum, since the area is a quadratic in $S$.

For the first two methods, we wish to have an area function in one variable, and so we may use:

$C=L-S$

and we have:

$\displaystyle A(S)=\frac{S^2}{16}+\frac{(L-S)^2}{4\pi}$

Method 1: find the axis of symmetry

We will write the area function in standard quadratic form:

$\displaystyle A(S)=\frac{4+\pi}{16\pi}S^2-\frac{L}{2\pi}S+\frac{L^2}{4\pi}$

Thus, the axis of symmetry is at:

$\displaystyle S=-\frac{-\frac{L}{2\pi}}{2\left(\frac{4+\pi}{16\pi} \right)}=\frac{4L}{4+\pi}$

Since the parabola opens upward, we know the global minimum is at this value of $S$.

Thus, this is the amount of the wire that should go to the square to minimize the total area. Analysis of the end-points reveals:

$\displaystyle A(0)=\frac{L^2}{4\pi}$

$\displaystyle A(L)=\frac{L^2}{16}$

Since $A(0)>A(L)$, we find that to maximize the area, none of the wire should go to the square, and this makes sense as a circle will enclose more area per perimeter than a square.

Method 2: Equate derivative of area function to zero and solve for $S$ to get critical value.

$\displaystyle A(S)=\frac{S^2}{16}+\frac{(L-S)^2}{4\pi}$

$\displaystyle A'(S)=\frac{S}{8}-\frac{L-S}{2\pi}=\frac{\pi S-4(L-S)}{8\pi}=0$

This implies:

$\pi S-4(L-S)=0$

$S=\dfrac{4L}{4+\pi}$

The remaining analysis is the same as for Method 1.

Method 3: Use optimization with constraint

We have the objective function:

$\displaystyle A(C,S)=\frac{S^2}{16}+\frac{C^2}{4\pi}$

subject to the constraint:

$g(C,S)=C+S-L=0$

Using Lagrange multipliers, we find:

$\displaystyle \frac{C}{2\pi}=\lambda$

$\displaystyle \frac{S}{8}=\lambda$

this implies:

$\displaystyle \frac{C}{2\pi}=\frac{S}{8}$

$\displaystyle C=\frac{\pi S}{4}$

Substituting this into the constraint, we find:

$\dfrac{\pi S}{4}+S-L=0$

Solving for $S$, we find:

$S=\dfrac{4L}{4+\pi}$

The remaining analysis is the same as for Method 1.

In conclusion, we have found to minimize the area, we need:

$S=\dfrac{4L}{4+\pi}$

Using the given value $L=50\text{ m}$ we find then:

$S=\dfrac{200}{4+\pi}\,\text{m}$

To maximize the area, we need:

$S=0\text{ m}$.

To Maria and other visitors viewing this topic, I invite you to post other calculus problems here:

http://www.mathhelpboards.com/f10/
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top