kasperrepsak
- 31
- 0
Hey could someone explain why this is true? I am trying to understand how to solve such a problem but I don't understand the solution.
Problem:
Given a Markov chain \left\{X_{n}: n\in\ \mathbb{N}\right\} with four states 1,2,3,4 and transition matrix
P =<br /> \begin{pmatrix}<br /> 0 & \frac{1}{2}& \frac{1}{2} & 0 \\<br /> 0 & 0 & \frac{1}{2} & \frac{1}{2}\\<br /> \frac{1}{2} & 0 & 0 & \frac{1}{2} \\<br /> \frac{1}{2} & \frac{1}{2} & 0 & 0<br /> \end{pmatrix}
We leave from state 3. What is the chance that state 1 will be reached before state 4?
Solution:
Lets call this chance x. Let's call y the same chance but instead leaving from 2. Let's call:
f =<br /> \begin{pmatrix}<br /> 1 \\<br /> x \\<br /> y \\<br /> 0<br /> \end{pmatrix}
Then f satisfies P'f = f with P' the transition matrix derived from P by making state 1 and 4 absorbing states i.e.,
<br /> \begin{pmatrix}<br /> 1 & 0& 0 & 0 \\<br /> 0 & 0 & \frac{1}{2} & \frac{1}{2}\\<br /> \frac{1}{2} & 0 & 0 & \frac{1}{2} \\<br /> 0 & 0 & 0 & 1\end{pmatrix}*\begin{pmatrix}<br /> 1 \\<br /> x \\<br /> y \\<br /> 0<br /> \end{pmatrix}= \begin{pmatrix}<br /> 1 \\<br /> x \\<br /> y \\<br /> 0<br /> \end{pmatrix}
Solving gives y = 1/2, x = 1/4.
Problem:
Given a Markov chain \left\{X_{n}: n\in\ \mathbb{N}\right\} with four states 1,2,3,4 and transition matrix
P =<br /> \begin{pmatrix}<br /> 0 & \frac{1}{2}& \frac{1}{2} & 0 \\<br /> 0 & 0 & \frac{1}{2} & \frac{1}{2}\\<br /> \frac{1}{2} & 0 & 0 & \frac{1}{2} \\<br /> \frac{1}{2} & \frac{1}{2} & 0 & 0<br /> \end{pmatrix}
We leave from state 3. What is the chance that state 1 will be reached before state 4?
Solution:
Lets call this chance x. Let's call y the same chance but instead leaving from 2. Let's call:
f =<br /> \begin{pmatrix}<br /> 1 \\<br /> x \\<br /> y \\<br /> 0<br /> \end{pmatrix}
Then f satisfies P'f = f with P' the transition matrix derived from P by making state 1 and 4 absorbing states i.e.,
<br /> \begin{pmatrix}<br /> 1 & 0& 0 & 0 \\<br /> 0 & 0 & \frac{1}{2} & \frac{1}{2}\\<br /> \frac{1}{2} & 0 & 0 & \frac{1}{2} \\<br /> 0 & 0 & 0 & 1\end{pmatrix}*\begin{pmatrix}<br /> 1 \\<br /> x \\<br /> y \\<br /> 0<br /> \end{pmatrix}= \begin{pmatrix}<br /> 1 \\<br /> x \\<br /> y \\<br /> 0<br /> \end{pmatrix}
Solving gives y = 1/2, x = 1/4.
Last edited: