Christopher T.
- 2
- 0
1. The problem statement
Given a stochastic matrix P with states s_1...s_5:
<br /> P =<br /> \begin{pmatrix}<br /> 1 & p_2 & 0 & 0 & 0\\<br /> 0 & 0 & p_3 & 0 & 0\\<br /> 0 & q_2 & 0 & p_4 & 0\\<br /> 0 & 0 & q_3 & 0 & 0 \\<br /> 0 & 0 & 0 & q_4 & 1<br /> \end{pmatrix}<br />
and the matrix A (which is obviously related to P, but I can't see how... ):
<br /> A =<br /> \begin{pmatrix}<br /> 1 & -q_2 & 0 \\<br /> -p_3 & 1 & -q_3 \\<br /> 0 & -p_4 & 1<br /> \end{pmatrix}<br />
The question is how the vector y = (x_2,x_3, x_4) is a solution to the system Ay =b for a certain b that I am supposed to find.
The relevant equations are:
<br /> x_j^K = 1<br />
for all closed states
<br /> x_j^K = \sum_{i=1}^n p_{ij }x_i^K<br />
for all non-closed states
I started by expanding Ay:
<br /> Ay=<br /> \left(<br /> \begin{matrix}<br /> 1 & -q_2 & 0 \\<br /> -p_3 & 1 & -q_3 \\<br /> 0 & -p_4 & 1<br /> \end{matrix}<br /> \right)<br /> \left(<br /> \begin{matrix}<br /> x_2\\<br /> x_3\\<br /> x_4<br /> \end{matrix}<br /> \right)<br /> =<br /> \left(<br /> \begin{matrix}<br /> 1x_2 + -q_2x_3 \\<br /> -p_3x_2 + x_3 -q_3x_4 \\<br /> -p_4x_3 + x_4<br /> \end{matrix}<br /> \right)<br /> = b<br />
But that seems to get me nowhere. The question hints to using the formulas listed above, but I can't see how I can use them to find b.
I appreciate all help.
Given a stochastic matrix P with states s_1...s_5:
<br /> P =<br /> \begin{pmatrix}<br /> 1 & p_2 & 0 & 0 & 0\\<br /> 0 & 0 & p_3 & 0 & 0\\<br /> 0 & q_2 & 0 & p_4 & 0\\<br /> 0 & 0 & q_3 & 0 & 0 \\<br /> 0 & 0 & 0 & q_4 & 1<br /> \end{pmatrix}<br />
and the matrix A (which is obviously related to P, but I can't see how... ):
<br /> A =<br /> \begin{pmatrix}<br /> 1 & -q_2 & 0 \\<br /> -p_3 & 1 & -q_3 \\<br /> 0 & -p_4 & 1<br /> \end{pmatrix}<br />
The question is how the vector y = (x_2,x_3, x_4) is a solution to the system Ay =b for a certain b that I am supposed to find.
Homework Equations
The relevant equations are:
<br /> x_j^K = 1<br />
for all closed states
<br /> x_j^K = \sum_{i=1}^n p_{ij }x_i^K<br />
for all non-closed states
The Attempt at a Solution
I started by expanding Ay:
<br /> Ay=<br /> \left(<br /> \begin{matrix}<br /> 1 & -q_2 & 0 \\<br /> -p_3 & 1 & -q_3 \\<br /> 0 & -p_4 & 1<br /> \end{matrix}<br /> \right)<br /> \left(<br /> \begin{matrix}<br /> x_2\\<br /> x_3\\<br /> x_4<br /> \end{matrix}<br /> \right)<br /> =<br /> \left(<br /> \begin{matrix}<br /> 1x_2 + -q_2x_3 \\<br /> -p_3x_2 + x_3 -q_3x_4 \\<br /> -p_4x_3 + x_4<br /> \end{matrix}<br /> \right)<br /> = b<br />
But that seems to get me nowhere. The question hints to using the formulas listed above, but I can't see how I can use them to find b.
I appreciate all help.