What is the mystery behind the mass ratio of proton and electron?

  • Thread starter Thread starter Antonio Lao
  • Start date Start date
  • Tags Tags
    Mass Ratio
AI Thread Summary
The experimental mass ratio of the proton to the electron is approximately 1836, yet the reason for this specific value remains unknown. Sir Arthur Eddington explored various "magic numbers" in physics, including this mass ratio and the fine-structure constant, but did not find conclusive explanations. Recent calculations suggest that using a specific order of energy levels (LOE) can yield a value close to the accepted ratio, although this approach does not account for all variables. Discussions also touch on neutrino flavors and their potential mass ratios, with theories suggesting that neutrinos may change flavors during their journey from the sun to Earth, a phenomenon known as neutrino oscillation. Overall, the conversation highlights ongoing mysteries in particle physics and the quest for deeper understanding.
Antonio Lao
Messages
1,436
Reaction score
1
The experimental mass ratio of proton and electron is 1836.

Nobody knows why it has to be this number.

Sir Arthur Eddington did a lot of research on magic numbers of physics. But he did not succeed. One of the magic numbers is the fine-structure constant and another is the mass ratio of proton-electron.

Using the general form of H+ and H-, one can elucidate the mystery of this number 1836.

The proton mass is given by

n^{15}H-

The electron mass is given by

n^7H-

If we now assumed the LOE order is 6, i.e., n=6. The ratio is

6^8

Multiply by 2 and take the square root gives 1832, less than 1% of the accepted value. In this calculation, the contribution from continuous is ignored. And other unknown factors are not considered.
 
Last edited:
Physics news on Phys.org
Does this same near-coincidence continue with the rest of the baryons? How about the mesons?

What does this idea have to say about the neutrino flavours?

Can you make some predictions - e.g. the mass of the Higgs?

How many particles emerge from your H+H- with exactly zero mass?
 
Only for the Stables

Nereid,

This ratio might be just a coincidence, because it does not work for neutron-electron.

The proton is stable, its halflife is beyond 10^33 years. The electron is also stable. But neutrons are stable only in the nucleus of an atom. A free neutron has a halflife of 15 minutes, roughly the attention span of an average person.

I think, all the three neutrinos flavors (electron's, muon's and tau's) have all been detected. They are now being used to explain the mystery of the solar neutrino radiation. According to theory, the sun is supposed to output so much but only one-third been detected. So the theories think that the neutrinos are changing flavors along the way from the sun to earth. They call this neutrino oscillation.

I still cannot make any prediction in regard to the Higgs boson because it is not stable and probably it is not traveling in the same timeline as we are. When I say stable, I mean it should be sitting in space long enough for experimenters to see, to touch, to talk and do anything with it.

I have a hunch that zero-mass happens only when the number of H+ and H- are exactly equal in number and in the order of LOE for each particle configuration. The neutron has mass but its H+ H- are equal in number so I presumed that the order of LOE are not the same.

Antonio
 
Antonio Lao wrote: I think, all the three neutrinos flavors (electron's, muon's and tau's) have all been detected. They are now being used to explain the mystery of the solar neutrino radiation. According to theory, the sun is supposed to output so much but only one-third been detected. So the theories think that the neutrinos are changing flavors along the way from the sun to earth. They call this neutrino oscillation.
But what about the mass ratio of the neutrinos? If your H+H- idea has some merit in explaining the proton/electron mass ratio, it should also explain the neutrino mass ratios. (And if you say they're not known, you could make a prediction and become famous when they're later shown to match your prediction).
 
Not the Tau

I take that back. The tau neutrino is still not detected.

Using the table:

The electron-neutrino is 1H+ and 1H-
The muon-neutrino is 3H+ and 3H-
The tau-neutrino is 5H+ and 5H-

It is clear that the muon's is heavier than the electron's
the tau's is heavier than the muon's

these much I know

Antonio

Postscript

Nereid,

Taking your suggestion, I did some calculations based on the assumption that all three neutrinos are in LOE 6.

The results are: The mass ratio muon's to electron's is 36
The mass ratio tau's to muon's is 36
The mass ratio tau's to electron's is 1296

LOE 2: The ratios are 4 4 16
LOE 3: The ratios are 9 9 81
LOE 4: The ratios are 16 16 256
LOE 5: The ratios are 25 25 626

ditto
 
Last edited:
Thread 'Is there a white hole inside every black hole?'
This is what I am thinking. How much feasible is it? There is a white hole inside every black hole The white hole spits mass/energy out continuously The mass/energy that is spit out of a white hole drops back into it eventually. This is because of extreme space time curvature around the white hole Ironically this extreme space time curvature of the space around a white hole is caused by the huge mass/energy packed in the white hole Because of continuously spitting mass/energy which keeps...
Back
Top