B Mass & Stress-Energy Tensor: Why Not Explicitly?

e2m2a
Messages
354
Reaction score
13
Why doesn't mass show up in the stress-energy tensor explicitly?
 
Physics news on Phys.org
The stress energy tensor describes the flow of energy and momentum through space-time. Multiplying the stress-energy tensor by the velocity (4-velocity) of an observer gives the energy and momentum contained within a unit volume according to that observer.

"Relativistic mass" is another name for energy, and is one component of the stress-energy tensor, so in that sense "mass" could be considered to be one part of the stress-energy tensor. But it's not the whole tensor - since momentum and energy are intertwined in a similar manner to space and time. Energy is thus not a tensor, it's one component of a tensor. Mass in special relativity, in the sense of invariant mass, is defined as the Lorentz invariant length of the energy-momentum 4-vector - of an isolates system or particle. The "isolation" aspect is sometimes not stressed, but if you read the fine print in say, Taylor & Wheeler's "Space-time Physics", you'll see that it is assumed that one has an isolated system or an isolated particle when one talks about the invariant mass of the system or particle. If the system is isolated, and in flat space-time, one can find the invariant mass of the system from the stress-energy tensor by integrating the stress-energy tensor to find the total energy, the total momentum, and using the relationship E^2 - p^2 = m^2 (throw in factors of c as needed, if one is not using units where c=1).If one does not have flat space-time, one needs a different concept of mass. The details start to get technical here, I'll just mention that one might use the ADM mass, the Bondi mass, or the Komar mass, if one of them happens to apply. For some situations none of them apply.
 
  • Like
Likes fresh_42
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
Back
Top