Mastering Plane Physics: Solving Equations & Understanding Procedures

  • Thread starter Thread starter itzela
  • Start date Start date
  • Tags Tags
    Physics Planes
AI Thread Summary
The discussion focuses on solving two problems related to finding equations of planes in three-dimensional space. The first problem involves determining a plane through the origin that is parallel to the given plane, with the solution involving the normal vector and the dot product. The second problem requires finding a plane that passes through a specific point and contains a given line, which can be approached by identifying three noncollinear points. Participants clarify the concept of translating planes and emphasize the importance of using points from the line to construct the plane. Understanding these procedures is essential for mastering plane physics and solving related equations effectively.
itzela
Messages
34
Reaction score
0
I have been working on these two problems for a while now and I can't seem to come up with the right procedure to take them on:

1) Find the plane through the origin and parallel to the plane 2x - y + 3z = 1

* I thought this could be solved by taking the vector of the parallel plane <2, -1, 3> and cross multiplying with the origin, but that didn't get me anywhere.

2) Find the plane that passes through (1, 2, 3) and contains the line x=3t, y=1+t, z=2-t

* The same problem occurred in this case.

I know how to find a plane when given a point and a normal (perpendicular) vector... what would be of great help is if anyone could help me understand how to find the equation of planes under different circumstances (like the two problems above). Thanks a bunch =)
 
Last edited:
Physics news on Phys.org
There are always multiple ways of solving these kind of problems, but the following seems straightforward.

1) If you put in x=z=0 in the equation of the plane, you'll find the point where the plane crosses the y-axis. Now you need to translate the plane over some distance parallel to y to make this zero. (Do you know how translations work in general?)

2) You need three noncollinear points to be able to construct a plane. The equation of the line will give you 2, the given point in the plane is a third.
 
Thanks for the quick reply.
But no, I do not know how do a translation of a plane... could you explain :smile: ?
 
Just like you translate the graph of a function. The graph of f(x-c) is translated over a distance c wrt the graph of f(x).
 
i understood the first problem:

the normal vector to the plane would be <2, -1, 3> and the equation of the plane would be the dot product of the <2, -1, 3> *<x+0, y+0, z+0>=0
and the answer would be 2x - y + 3z = 0

for the second problem i am given two points:
(1, 2, 3) and (0, 1, 2)
* could I just plug in any number for t (say, 1) to get a third point?
 
Last edited:
Actually, you are only "given" one point. You clearly got the point (0, 1, 2) by putting t= 0 in the equation of the line. Since all points of the line are in the plane, choosing any other value of t (t=1 would be convenient) will give you a third point in the plane.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top