Twigg
Science Advisor
Gold Member
- 893
- 483
Thanks for posting these, @fresh_42!
Use ##x+y+z = 0## to suggest a new coordinate system ##(X,Y,Z)## over ##\mathbb{R}^3## where ##Z = x+y+z##. I choose to define ##X = x - y## and ##Y = y - z##. These coordinates are orthogonal, since ##\nabla X \times \nabla Y = \nabla Z##.
Since this is a linear transformation, we can write it in matrix form:
$$\left( \begin{array}{cc} X \\ Y \\ Z \end{array} \right) = \left( \begin{array}{cc} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 1 & 1 \end{array} \right) \left( \begin{array}{cc} x \\ y \\ z \end{array} \right)$$
and we can invert that
$$\left( \begin{array}{cc} x \\ y \\ z \end{array} \right) = \frac{1}{3} \left( \begin{array}{cc} 2 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & -2 & 1 \end{array} \right) \left( \begin{array}{cc} X \\ Y \\ Z \end{array} \right)$$
Now we can write the second constraint in matrix form $$ 9 = \left( \begin{array}{cc} x & y & z \\ \end{array} \right) \left( \begin{array}{cc} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \\ \end{array} \right) \left(\begin{array}{cc} x \\ y \\ z \\ \end{array} \right)$$
Then we can transform that to the ##(X,Y,Z)## coordinate system:
$$\frac{1}{9} \left( \begin{array}{cc} 2 & -1 & -1 \\ 1 & 1 & -2 \\ 1 & 1 & 1 \end{array} \right) \left( \begin{array}{cc} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \\ \end{array} \right) \left( \begin{array}{cc} 2 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & -2 & 1 \end{array} \right) = \left( \begin{array}{cc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right)$$
So, finally, we have $$X^2 + Y^2 = 9$$ so the space is a submersion (or is it immersion? I can never remember the difference) of ##\mathbb{S}^1## and thus a manifold.
...I'll get back to the the tangent and normal spaces at point p later. My partner is giving me the evil eye for spending Saturday afternoon doing physics. I think I'm in trouble
Since this is a linear transformation, we can write it in matrix form:
$$\left( \begin{array}{cc} X \\ Y \\ Z \end{array} \right) = \left( \begin{array}{cc} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 1 & 1 \end{array} \right) \left( \begin{array}{cc} x \\ y \\ z \end{array} \right)$$
and we can invert that
$$\left( \begin{array}{cc} x \\ y \\ z \end{array} \right) = \frac{1}{3} \left( \begin{array}{cc} 2 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & -2 & 1 \end{array} \right) \left( \begin{array}{cc} X \\ Y \\ Z \end{array} \right)$$
Now we can write the second constraint in matrix form $$ 9 = \left( \begin{array}{cc} x & y & z \\ \end{array} \right) \left( \begin{array}{cc} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \\ \end{array} \right) \left(\begin{array}{cc} x \\ y \\ z \\ \end{array} \right)$$
Then we can transform that to the ##(X,Y,Z)## coordinate system:
$$\frac{1}{9} \left( \begin{array}{cc} 2 & -1 & -1 \\ 1 & 1 & -2 \\ 1 & 1 & 1 \end{array} \right) \left( \begin{array}{cc} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \\ \end{array} \right) \left( \begin{array}{cc} 2 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & -2 & 1 \end{array} \right) = \left( \begin{array}{cc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right)$$
So, finally, we have $$X^2 + Y^2 = 9$$ so the space is a submersion (or is it immersion? I can never remember the difference) of ##\mathbb{S}^1## and thus a manifold.
...I'll get back to the the tangent and normal spaces at point p later. My partner is giving me the evil eye for spending Saturday afternoon doing physics. I think I'm in trouble
