bpet said:
Ok so I used Buchberger’s algorithm
https://en.m.wikipedia.org/wiki/Buchberger's_algorithm, only one polynomial was added to the basis as described in the previous post and this reduced to x+1, then the original polynomials reduced to 0 and y^2-1 trivially.
As for the irreducible components, I would guess two: one corresponding to x=-1 and y=1 and one for x=-1 and y=-1.
Is this right?
Thanks
I'll add the detailed solution in case someone wants to learn a bit of algebraic geometry:
##\mathbb{R}[x,y]## is partially ordered by ##x\prec y## according to which we define ##LT(f)## as the leading term of the polynomial ##f\in \mathbb{R}[x,y]## and ##LC(f)## as the leading coefficient of ##f.## A
Gröbner basis of ##I## is a generating system ##G=(g_1,\ldots,g_n)## of polynomials, such that for all ##f\in I-\{0\}## there is a ##g\in G## whose leading term divides the one of ##f\, : \,LT(g)\,|\,LT(g).## A Gröbner basis is called
minimal, if for all ##g\in G##
$$
LT(g) \notin \langle LT(G-\{g\})\rangle \, \wedge \,LC(g)=1.
$$
and
reduced if no monomial of its elements ##g\in G## is an element of ##\langle LT(G-\{g\})\rangle ## and ##LC(g)=1.## Reduced Gröbner bases are automatically minimal. They are also unique whereas the minimal ones do not need to be.
Gröbner bases can be found by the Buchberger algorithm. We define for two polynomials ##p,q \in I-\{0\}## the division
$$
S(p,q):=\dfrac{lcm(LT(p),LT(q))}{LT(p)}\cdot p - \dfrac{lcm(LT(p),LT(q))}{LT(q)}\cdot q
$$
Then Buchberger's algorithm can be written as
\begin{align*}
\text{INPUT:}\;\; &\{I\}=\{f_1,\ldots,f_n\}\\
\text{OUTPUT:}\;\;& \text{Gröbner basis}\;\; G =(g_{1},\dots ,g_{m})\\
\text{INIT:}\;\; &G:=\{I\}\\
1. & \;\;\text{DO} \\
2. & \;\;\quad G':=G \\
3. & \;\;\quad \text{FOREACH}\;\;p,q\in G' \, , \,p\neq q \\
4. & \;\;\quad \quad \quad s=remainder(S(p,q),G) \\
5. & \;\;\quad \quad \quad \text{IF}\;\;s\neq 0 \;\;\text{THEN}\;\;G:=G\cup \{s\}\\
6. & \;\;\quad \text{NEXT} \\
7. & \;\;\text{UNTIL} \;\;G=G'
\end{align*}
We start with ##f_1(x,y)=x^2y+xy\, , \,f_2(x,y)=xy^2+1## and compute
\begin{align*}
S(f_1,f_2)&=\dfrac{lcm(x^2y,xy^2)}{x^2y}f_1-\dfrac{lcm(x^2y,xy^2)}{xy^2}f_2\\
&=yf_1-xf_2=xy^2-x=1\cdot f_2-x-1\\
G'&=G\cup \{f_3:=-x-1\}=\{f_1,f_2,f_3\}\\
S(f_1,f_3)&=\dfrac{lcm(x^2y,x)}{x^2y}f_1-\dfrac{lcm(x^2y,x)}{-x}f_3\\
&=f_1+xyf_3=x^2y+xy+xy(-x-1)=0\\
S(f_2,f_3)&=\dfrac{lcm(xy^2,x)}{xy^2}f_2-\dfrac{lcm(xy^2,x)}{-x}f_3\\
&=f_2+y^2f_3=xy^2+1+y^2(-x-1)=-y^2+1\\
G'&=G\cup \{f_4:=-y^2+1\}=\{f_1,f_2,f_3,f_4\}\\
S(f_1,f_4)&=\dfrac{lcm(x^2y,y^2)}{x^2y}f_1-\dfrac{lcm(x^2y,y^2)}{-y^2}f_4=yf_1+x^2f_4\\
&=x^2y^2+xy^2-x^2y^2+x^2=xy^2+1+x^2-1\\
&=f_2-(x-1)(-x-1)=f_2-xf_3+f_3 \equiv 0 \mod G\\
S(f_2,f_4)&=\dfrac{lcm(xy^2,y^2)}{xy^2}f_2-\dfrac{lcm(xy^2,y^2)}{-y^2}f_4=f_2+xf_4\\
&= xy^2+1-xy^2+x=x+1=-f_3\equiv 0 \mod G\\
S(f_3,f_4)&=\dfrac{lcm(x,y^2)}{-x}f_3-\dfrac{lcm(x,y^2)}{-y^2}f_4=-y^2f_3+xf_4\\
&=y^2(x+1)-xy^2+x=y^2+x\\
&=-f_2-y^2f_3-f_3\equiv 0 \mod G
\end{align*}
Hence we get a Gröbner basis ##\{x^2y+xy,xy^2+1,-x-1,-y^2+1\}## of ##I.##
\begin{align*}
LT(f_1)&=x^2y=(-xy)\cdot (-x)=(-xy)\cdot LT(f_3)\\
LT(f_2)&=xy^2=(-x)\cdot (-y^2)=(-x)\cdot LT(f_4)
\end{align*}
means that ##\{x+1,y^2-1\}## is a minimal Gröbner basis, which is already reduced, because we cannot omit another leading term and the leading coefficients are normed to ##1.## The vanishing variety are thus the points ##\{(-1,-1),(-1,1)\}## which are two separated points, i.e. two irreducible components.