Prove: (\lambda)^m is an Eigenvalue of A^m

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Eigenvalue
Dustinsfl
Messages
2,217
Reaction score
5
Let \lambda be an eigenvalue of A and let \mathbf{x} be an eigenvector belonging to \lambda. Use math induction to show that, for m\geq1, (\lambda)^m is an eigenvalue of A^m and \mathbf{x} is an eigenvector of A^m belonging to (\lambda)^m.

A\mathbf{x}=\lambda\mathbf{x}

p(1): A^1\mathbf{x}=(\lambda)^1\mathbf{x}\

p(k): A^k\mathbf{x}=(\lambda)^k\mathbf{x}

p(k+1): A^{k+1}\mathbf{x}=(\lambda)^{k+1}\mathbf{x}

Assume p(k) is true.

Since p(k) is true, p(k+1): A*(A^k\mathbf{x})

Not sure if this is correct path to take to the end result. Let alone, if it is if I am going about it right.
 
Last edited:
Physics news on Phys.org
You were doing ok, except you don't want A^(k+1)(lambda). You want p(k+1): A^(k+1)(x)=A*(A^k(x))=A*(lambda^k*x)=lambda^k*A(x)=?
 
Ok I gotcha.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top