Dustinsfl
- 2,217
- 5
Let \lambda be an eigenvalue of A and let \mathbf{x} be an eigenvector belonging to \lambda. Use math induction to show that, for m\geq1, (\lambda)^m is an eigenvalue of A^m and \mathbf{x} is an eigenvector of A^m belonging to (\lambda)^m.
A\mathbf{x}=\lambda\mathbf{x}
p(1): A^1\mathbf{x}=(\lambda)^1\mathbf{x}\
p(k): A^k\mathbf{x}=(\lambda)^k\mathbf{x}
p(k+1): A^{k+1}\mathbf{x}=(\lambda)^{k+1}\mathbf{x}
Assume p(k) is true.
Since p(k) is true, p(k+1): A*(A^k\mathbf{x})
Not sure if this is correct path to take to the end result. Let alone, if it is if I am going about it right.
A\mathbf{x}=\lambda\mathbf{x}
p(1): A^1\mathbf{x}=(\lambda)^1\mathbf{x}\
p(k): A^k\mathbf{x}=(\lambda)^k\mathbf{x}
p(k+1): A^{k+1}\mathbf{x}=(\lambda)^{k+1}\mathbf{x}
Assume p(k) is true.
Since p(k) is true, p(k+1): A*(A^k\mathbf{x})
Not sure if this is correct path to take to the end result. Let alone, if it is if I am going about it right.
Last edited: