How Does the Inequality 2*3^k >= 3 Arise in Mathematical Induction?

AI Thread Summary
The discussion focuses on understanding the application of mathematical induction to prove the inequality 3^n + 2 >= 3n for all positive integers n. The user is confused about the necessity of the inequality 2*3^k >= 3 in the inductive step. Clarification is provided that this additional inequality is not needed to complete the proof. The conversation emphasizes the importance of correctly applying the inductive hypothesis and shows how to derive the necessary steps without the extra inequality. Ultimately, the user is reassured that their understanding of the basic induction process is on track.
beatem
Messages
4
Reaction score
0
Hi,

I'm trying to learn mathematical induction for proving inequalities, but there is just one step I cannot get past: finding another inequality that is added to the inductive hypothesis.

For example, in this problem:

Prove for all positive integers (n >= 1), prove 3^n + 2 >= 3n.

I understand the basis step and in general how to do induction, but for some reason, the example says that that after I get the hypothesis, 3^k + 2 >= 3k (for some arbitrary k), it can generate the inequality 2*3^k >= 3 for all k >= 1. Where does this come from? I can follow how it adds this inequality to the hypothesis, but what is this, and how would I go about getting this?

This isn't just a generic problem by the way: I've looked at many examples, but I can't figure out what this is when dealing with inequalities and induction.
 
Mathematics news on Phys.org
For your example I would first show: 3n ≥ 3n which is easier.
You said you can do the basic step. So let's move on to the induction.

To do the induction we suppose n, then we prove if n is true, n+1 is true.
So first suppose: 3n ≥ 3n. Then our goal is to show: 3n+1≥3(n+1)

To do that I would prove the following:
3n ≥ 3n ⇒ 3+3n ≥ 3(n+1)
Then i would prove: 3n+1≥3+3n for n>1
Putting these together: 3n+1≥3+3n≥3(n+1) This step shows our goal!
Thus by the principle of induction: 3n ≥ 3n for Natural n

Then you know: 3n ≥ 3n ⇒3n + 2 ≥ 3n or 3n ≥ 3n ⇒3*3*3n =3n+2 ≥ 3n from the properties of inequalities. It's hard to tell which of these you were trying to prove how you wrote it.
 
Last edited:
Thanks for the reply!

Sorry: I meant (3^n)+2

So is there no need for the extra inequality of 2*3^n >= 3? Or am I just missing something?
 
No need for the other inequality, which i think you typed incorrectly.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top