Matlab question, just checking If i inputted correctly.

  • Thread starter Thread starter goonking
  • Start date Start date
  • Tags Tags
    Matlab
goonking
Messages
434
Reaction score
3

Homework Statement


upload_2015-7-12_15-20-35.png


Homework Equations

The Attempt at a Solution


07IYl0C.png

look at line4, did I enter it correctly?
I must have did something wrong because there is no contour at all, all i see are parallel lines.
 
Physics news on Phys.org
You are probably intending to use element-by-element multiplication, but you have used matrix multiplication. You need to use the .* operator instead.
 
.
 

Attachments

  • upload_2015-7-12_15-35-58.png
    upload_2015-7-12_15-35-58.png
    6.3 KB · Views: 385
  • upload_2015-7-12_15-36-56.png
    upload_2015-7-12_15-36-56.png
    2 KB · Views: 424
Last edited:
You need to explain whether you solved the problem or not. It's now unclear whether you need help or not.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top