Undergrad Matrix element in problem with hydrogen atom

Click For Summary
The discussion revolves around calculating the matrix element for a hydrogen atom using its Hamiltonian eigenstates. The specific matrix element in question is <210|rsin(θ)cos(φ)|100>, with the participant arriving at a result of 4π/(27√2). However, a key point raised is that the wavefunction ψ210 is independent of φ, leading to the integral ∫0^(2π) cos(φ) dφ being zero. This indicates that the initial calculation may be incorrect due to a misunderstanding of the angular dependencies. The conversation highlights the importance of correctly interpreting the properties of the wavefunctions in quantum mechanics.
Salmone
Messages
101
Reaction score
13
I have a problem in calculate a matrix element in a problem with hydrogen atom.

I have an hydrogen atom and Hamiltonian eigenstates ##|n,l,m>## where ##n## are energy quantum numbers, ##l## are ##L^2## quantum numbers and ##m## are ##L_z## quantum numbers, I have to calculate the matrix element ##<210|rsin(\theta)cos(\phi)|100>## with ##\theta \in [0,\pi]##, ##\phi \in [0,2\pi]##, ##r \in [0,+\infty]## and the result I get is ##\frac{4\pi}{27 \sqrt{2}}##, is it right?
 
Physics news on Phys.org
Yes you are right, I must have gotten the angles mixed up and didn't realize it.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 1 ·
Replies
1
Views
966
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K