Matrix Representation of a linear operator

*FaerieLight*
Messages
43
Reaction score
0
T is a linear operator from the space of 2 by 2 matrices over the complex plane to the complex plane, that is
T: mat(2x2,C)\rightarrowC, given by

T[a b; c d] = a + d

T operates on a 2 by 2 matrix with elements a, b, c, d, in case that isn't entirely clear. So T gives the trace of the matrix, and it can be shown that T is linear.

I'm having trouble finding a matrix representation of T with respect to any basis.
If T can be written as a matrix with respect to a basis, then that matrix applied to the 2 by 2 above would give a 1 by 1 matrix. I don't understand how this can be the case, since you can't multiply a 2 by 2 matrix with any matrix that I know of to get a 1 by 1 matrix as the result.

If I go by the rule that the columns of the matrix are the images of T applied to the basis which you are finding the matrix representation with respect to, then using the basis vectors [1 0; 0 0], [0 1; 0 0], [0 0; 1 0], [0 0; 0 1], which I think are the standard basis vectors for 2 by 2 matrices, I end up with a 1 by 4 matrix of 0s. This doesn't seem right, because I can't multiply a 1 by 4 matrix with a 2 by 2 matrix to get a 1 by 1 matrix.

Can someone please explain to me where I'm going wrong with this?
Thanks
 
Physics news on Phys.org
The matrix will be 1×4, and you won't be multiplying it with any 2×2 matrices, but with a 4×1 matrix.

This should be easy to see if you understand the relationship between linear operators and matrices described in this post.
 
When you represent a linear operator as a matrix, you don't multiply the matrix by the vector, you multiply the matrix by the representation of the vector in Rn.
That is, you can represent the matrix
\begin{bmatrix}a & b\\ c & d\end{bmatrix}

as the column
\begin{bmatrix}a \\ b \\ c\\ d\end{bmatrix}
 
Last edited by a moderator:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top