Max Initial Separation for Meeting of Two Moving Bodies

AI Thread Summary
The discussion centers on determining the maximum initial separation between two bodies moving towards each other with constant retardation. The initial velocities and retardations are given, and the problem requires finding a formula for their maximum separation. The attempted solution calculates the distances each body travels before stopping, but the result does not match any of the provided options. The correct answer, according to the book, is option b, which is derived from a different approach involving time and distance equations. Clarification is sought on how to reconcile the attempted solution with the correct answer.
Mr Virtual
Messages
218
Reaction score
4

Homework Statement


Two bodies move in a straight line towards each other at initial velocities v1 and v2 and with constant retardation a1 and a2 respectively at the initial instant. What is the max initial separation between the bodies for which they will meet during the motion?

(sqr -> square of , root ->square root of)
Options:
a) sqr(v1)/a1 + sqr(v1)/a2
b) sqr(v1+v2)/2(a1+a2)
c)v1*v2/root(a1*a2)
d)sqr(v1)-sqr(v2)/(a1-a2)


Homework Equations



sqr(v) = sqr(u) + 2as


The Attempt at a Solution



Let s1 = Distance traveled by object1 before it stops at last
and s2=Distance traveled by object 2 before it stops

0 = sqr(v1) - 2*a1*s1
s1= sqr(v1)/2*a1
s2=sqr(v2)/2*a2

Max dist=s1 + s2

However, this answer does not match with any of the options above. According to the book, the correct answer is option b.
Help!
 
Physics news on Phys.org
My answer doesn't match too.

I did it like this:

t=\frac{v_{1}}{a_{1}}=\frac{v_{2}}{a_{2}},

s_{1}=v_{1}t-\frac{a_{1}}{2}t^{2}=\frac{v_{1}^{2}}{a_{1}}-\frac{v_{1}^2}{2a_{1}}=\frac{v_{1}^{2}}{2a_{1}},

s_{2}=v_{2}t-\frac{a_{2}}{2}t^{2}=\frac{v_{2}^{2}}{a_{2}}-\frac{v_{2}^2}{2a_{2}}=\frac{v_{2}^{2}}{2a_{2}},

but the sum of the last two expressions doesn't match with the (b) option, for which you say that equals to:
\frac{(v_{1}+v_{2})^{2}}{2(a_{2}+a_{2})}.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top