Max inversion temperature for a gas (Dieterici’s equation of state)

AI Thread Summary
The discussion focuses on deriving the maximum inversion temperature for a gas using Dieterici's equation of state. Participants clarify that the inversion curve typically relates temperature (T) to pressure (P), rather than molar volume (V). A user seeks guidance on how to express the inversion temperature using the provided equation, specifically needing to eliminate volume (V) from the equations. Another participant advises solving for V from one equation and substituting it into the other to achieve the desired expression. The user acknowledges this approach and confirms their understanding.
jonny997
Messages
25
Reaction score
5
Homework Statement
I’m trying to calculate the maximum inversion temperature from the inversion curve.
Relevant Equations
See below
DE470E58-1630-423E-84E8-0E5DBCBDA631.jpeg

The notes my lecturer has provided state that the maximum temperature can be found taking p = 0 in the inversion curve formula, given as:

6A8750D7-F98E-47B3-B21A-22DFC4A35C64.jpeg


I’m not sure how to obtain this??

These are the formulas:
01F6BEEB-B15E-431E-863B-EB4FA8D37442.jpeg

This is my attempt at a solution :
D4A3A282-5D6B-48D9-88E7-19D674F87E42.jpeg

BA25810D-9D85-40B6-A08C-CF6AB4E45C1B.jpeg

Not sure if this approach is right?
 
Physics news on Phys.org
Your work looks correct to me.

For part (b) you obtain the inversion curve as a relation between the inversion temperature ##T## and the molar volume ##V##:

1713569406810.png


I believe an inversion curve is typically a relation between ##T## and ##P## rather than between ##T## and ##V##.
 
TSny said:
Your work looks correct to me.

For part (b) you obtain the inversion curve as a relation between the inversion temperature ##T## and the molar volume ##V##:

View attachment 343722

I believe an inversion curve is typically a relation between ##T## and ##P## rather than between ##T## and ##V##.
Hey. Thanks for the response. Do you have any idea how I would go about obtaining the expression my lecturer has provided? Namely, $$ P_{inv} = \left[\frac{2a}{b^2} - \frac{RT}{b}\right]e^{\frac{1}{2}-\frac{a}{RTb}}$$ If I am to rewrite ## T = \frac{2a}{R}\left(\frac{1-\frac{b}{V}}{b}\right) ## in terms of ##P## do I not need an explicit expression for T or V from Dieterici’s e.o.s.
 
jonny997 said:
If I am to rewrite ## T = \frac{2a}{R}\left(\frac{1-\frac{b}{V}}{b}\right) ## in terms of ##P## do I not need an explicit expression for T or V from Dieterici’s e.o.s.
You need to eliminate ##V## between the equation of state and the equation ## T = \frac{2a}{R}\left(\frac{1-\frac{b}{V}}{b}\right) ##. Decide which equation is easier to solve for ##V## and then substitute for ##V## in the other equation.
 
TSny said:
You need to eliminate ##V## between the equation of state and the equation ## T = \frac{2a}{R}\left(\frac{1-\frac{b}{V}}{b}\right) ##. Decide which equation is easier to solve for ##V## and then substitute for ##V## in the other equation.
Ahhh okay, thank you. For some reason it didn’t click that I could solve for V using ## T = \frac{2a}{R}\left(\frac{1-\frac{b}{V}}{b}\right) ## and then sub that into the other equation 😬 I’ve got it now
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top