MHB Maximize Σ(x^2+y)(y^2+x))/((x+y-1)^2)

  • Thread starter Thread starter lfdahl
  • Start date Start date
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find the greatest real number, $T$, that satisfies the inequality:

\[\frac{(x^2+y)(y^2+x)}{(x+y-1)^2}+\frac{(y^2+z)(z^2+y)}{(y+z-1)^2}+\frac{(z^2+x)(x^2+z)}{(x+z-1)^2}-2(x+y+z)\geq T\]

for all real numbers $x$, $y$ and $z$, such that $x+y \ne 1$, $y+z \ne 1$ and $x+z \ne 1$.
 
Mathematics news on Phys.org
lfdahl said:
Find the greatest real number, $T$, that satisfies the inequality:

\[\frac{(x^2+y)(y^2+x)}{(x+y-1)^2}+\frac{(y^2+z)(z^2+y)}{(y+z-1)^2}+\frac{(z^2+x)(x^2+z)}{(x+z-1)^2}-2(x+y+z)\geq T\]

for all real numbers $x$, $y$ and $z$, such that $x+y \ne 1$, $y+z \ne 1$ and $x+z \ne 1$.
[sp]
Let $f(x,y,z) = \frac{(x^2+y)(y^2+x)}{(x+y-1)^2}+\frac{(y^2+z)(z^2+y)}{(y+z-1)^2}+\frac{(z^2+x)(x^2+z)}{(x+z-1)^2}-2(x+y+z)$. Then $f(x,y,z)$ is the cyclically symmetric sum of three functions of two variables, one of which is $g(x,y) = \dfrac{(x^2+y)(y^2+x)}{(x+y-1)^2} - (x+y)$.

It seems like a good guess that $g(x,y)$ will be minimised when $y=x$ (and no doubt MarkFL would produce a "cyclic symmetry" argument to justify that). But $$g(x,x) = \frac{(x^2+x)^2 - 2x(2x-1)^2}{(2x-1)^2} = \frac{x^4 - 6x^3 + 9x^2 -2x}{(2x-1)^2} = \frac{\bigl(x^2 - 3x + \frac12\bigr)^2 - \frac14(2x-1)^2}{(2x-1)^2} = \biggl(\frac{x^2 - 3x + \frac12}{2x-1}\biggr)^2 - \frac14.$$ That has a lower bound of $-\frac14$, attained when $x$ is a root of $x^2 - 3x + \frac12$, namely $x = \frac12(3\pm\sqrt7).$

So the next step is to see whether $-\frac14$ is a lower bound for $g(x,y)$. In fact, $$g(x,y) + \frac14 = \frac{(x^2+y)(y^2+x) - \bigl(x+y-\frac14 \bigr)(x+y-1)^2}{(x+y-1)^2} = \frac{x^2y^2 - 3xy(x+y) + \frac94(x^2+y^2) + \frac{11}2xy - \frac32(x+y) + \frac14}{(x+y-1)^2}.$$ But polarising the expression in the above calculation for $g(x,x)$ gives exactly the numerator of that fraction, namely $$\bigl(xy - \tfrac32(x+y) + \tfrac12\bigr)^2 = x^2y^2 - 3xy(x+y) + \tfrac94(x^2+y^2) + \tfrac{11}2xy - \tfrac32(x+y) + \tfrac14.$$ Therefore $$g(x,y) = \biggl(\frac{xy - \tfrac32(x+y) + \tfrac12}{x+y-1}\biggr)^2 - \frac14,$$ so that $g(x,y)$ has lower bound $-\frac14$, attained when $x = y = \frac12(3\pm\sqrt7).$

The same argument applies to the other two cyclically symmetric functions $g(y,z)$ and $g(z,x)$. So the minimum value of $f(x,y,z) = g(x,y) + g(y,z) + g(z,x)$ is $-\frac34$, attained when $x = y = z = \frac12(3\pm\sqrt7).$

[/sp]
 
Last edited:
Opalg said:
[sp]
Let $f(x,y,z) = \frac{(x^2+y)(y^2+x)}{(x+y-1)^2}+\frac{(y^2+z)(z^2+y)}{(y+z-1)^2}+\frac{(z^2+x)(x^2+z)}{(x+z-1)^2}-2(x+y+z)$. Then $f(x,y,z)$ is the cyclically symmetric sum of three functions of two variables, one of which is $g(x,y) = \dfrac{(x^2+y)(y^2+x)}{(x+y-1)^2} - (x+y)$.

It seems like a good guess that $g(x,y)$ will be minimised when $y=x$ (and no doubt MarkFL would produce a "cyclic symmetry" argument to justify that). But $$g(x,x) = \frac{(x^2+x)^2 - 2x(2x-1)^2}{(2x-1)^2} = \frac{x^4 - 6x^3 + 9x^2 -2x}{(2x-1)^2} = \frac{\bigl(x^2 - 3x + \frac12\bigr)^2 - \frac14(2x-1)^2}{(2x-1)^2} = \biggl(\frac{x^2 - 3x + \frac12}{2x-1}\biggr)^2 - \frac14.$$ That has a lower bound of $-\frac14$, attained when $x$ is a root of $x^2 - 3x + \frac12$, namely $x = \frac12(3\pm\sqrt7).$

So the next step is to see whether $-\frac14$ is a lower bound for $g(x,y)$. In fact, $$g(x,y) + \frac14 = \frac{(x^2+y)(y^2+x) - \bigl(x+y-\frac14 \bigr)(x+y-1)^2}{(x+y-1)^2} = \frac{x^2y^2 - 3xy(x+y) + \frac94(x^2+y^2) + \frac{11}2xy - \frac32(x+y) + \frac14}{(x+y-1)^2}.$$ But polarising the expression in the above calculation for $g(x,x)$ gives exactly the numerator of that fraction, namely $$\bigl(xy - \tfrac32(x+y) + \tfrac12\bigr)^2 = x^2y^2 - 3xy(x+y) + \tfrac94(x^2+y^2) + \tfrac{11}2xy - \tfrac32(x+y) + \tfrac14.$$ Therefore $$g(x,y) = \biggl(\frac{xy - \tfrac32(x+y) + \tfrac12}{x+y-1}\biggr)^2 - \frac14,$$ so that $g(x,y)$ has lower bound $-\frac14$, attained when $x = y = \frac12(3\pm\sqrt7).$

The same argument applies to the other two cyclically symmetric functions $g(y,z)$ and $g(z,x)$. So the minimum value of $f(x,y,z) = g(x,y) + g(y,z) + g(z,x)$ is $-\frac34$, attained when $x = y = z = \frac12(3\pm\sqrt7).$

[/sp]

Thankyou, Opalg, for your exemplary analytical solution. You even solved the problem without using the "cyclic symmetry" argument! ;) Great!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top