MHB Maximize Σ(x^2+y)(y^2+x))/((x+y-1)^2)

  • Thread starter Thread starter lfdahl
  • Start date Start date
AI Thread Summary
The discussion focuses on finding the maximum value of T in the inequality involving a cyclically symmetric function of three variables, x, y, and z. The function is expressed as a sum of terms that depend on the variables and is analyzed for its minimum value. It is determined that the lower bound of the function is -3/4, achieved when all variables are equal to specific roots of a quadratic equation. The analysis employs techniques such as minimizing a derived function and polarizing expressions to confirm the bounds. The conclusion emphasizes the significance of the derived minimum value in relation to the original inequality.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find the greatest real number, $T$, that satisfies the inequality:

\[\frac{(x^2+y)(y^2+x)}{(x+y-1)^2}+\frac{(y^2+z)(z^2+y)}{(y+z-1)^2}+\frac{(z^2+x)(x^2+z)}{(x+z-1)^2}-2(x+y+z)\geq T\]

for all real numbers $x$, $y$ and $z$, such that $x+y \ne 1$, $y+z \ne 1$ and $x+z \ne 1$.
 
Mathematics news on Phys.org
lfdahl said:
Find the greatest real number, $T$, that satisfies the inequality:

\[\frac{(x^2+y)(y^2+x)}{(x+y-1)^2}+\frac{(y^2+z)(z^2+y)}{(y+z-1)^2}+\frac{(z^2+x)(x^2+z)}{(x+z-1)^2}-2(x+y+z)\geq T\]

for all real numbers $x$, $y$ and $z$, such that $x+y \ne 1$, $y+z \ne 1$ and $x+z \ne 1$.
[sp]
Let $f(x,y,z) = \frac{(x^2+y)(y^2+x)}{(x+y-1)^2}+\frac{(y^2+z)(z^2+y)}{(y+z-1)^2}+\frac{(z^2+x)(x^2+z)}{(x+z-1)^2}-2(x+y+z)$. Then $f(x,y,z)$ is the cyclically symmetric sum of three functions of two variables, one of which is $g(x,y) = \dfrac{(x^2+y)(y^2+x)}{(x+y-1)^2} - (x+y)$.

It seems like a good guess that $g(x,y)$ will be minimised when $y=x$ (and no doubt MarkFL would produce a "cyclic symmetry" argument to justify that). But $$g(x,x) = \frac{(x^2+x)^2 - 2x(2x-1)^2}{(2x-1)^2} = \frac{x^4 - 6x^3 + 9x^2 -2x}{(2x-1)^2} = \frac{\bigl(x^2 - 3x + \frac12\bigr)^2 - \frac14(2x-1)^2}{(2x-1)^2} = \biggl(\frac{x^2 - 3x + \frac12}{2x-1}\biggr)^2 - \frac14.$$ That has a lower bound of $-\frac14$, attained when $x$ is a root of $x^2 - 3x + \frac12$, namely $x = \frac12(3\pm\sqrt7).$

So the next step is to see whether $-\frac14$ is a lower bound for $g(x,y)$. In fact, $$g(x,y) + \frac14 = \frac{(x^2+y)(y^2+x) - \bigl(x+y-\frac14 \bigr)(x+y-1)^2}{(x+y-1)^2} = \frac{x^2y^2 - 3xy(x+y) + \frac94(x^2+y^2) + \frac{11}2xy - \frac32(x+y) + \frac14}{(x+y-1)^2}.$$ But polarising the expression in the above calculation for $g(x,x)$ gives exactly the numerator of that fraction, namely $$\bigl(xy - \tfrac32(x+y) + \tfrac12\bigr)^2 = x^2y^2 - 3xy(x+y) + \tfrac94(x^2+y^2) + \tfrac{11}2xy - \tfrac32(x+y) + \tfrac14.$$ Therefore $$g(x,y) = \biggl(\frac{xy - \tfrac32(x+y) + \tfrac12}{x+y-1}\biggr)^2 - \frac14,$$ so that $g(x,y)$ has lower bound $-\frac14$, attained when $x = y = \frac12(3\pm\sqrt7).$

The same argument applies to the other two cyclically symmetric functions $g(y,z)$ and $g(z,x)$. So the minimum value of $f(x,y,z) = g(x,y) + g(y,z) + g(z,x)$ is $-\frac34$, attained when $x = y = z = \frac12(3\pm\sqrt7).$

[/sp]
 
Last edited:
Opalg said:
[sp]
Let $f(x,y,z) = \frac{(x^2+y)(y^2+x)}{(x+y-1)^2}+\frac{(y^2+z)(z^2+y)}{(y+z-1)^2}+\frac{(z^2+x)(x^2+z)}{(x+z-1)^2}-2(x+y+z)$. Then $f(x,y,z)$ is the cyclically symmetric sum of three functions of two variables, one of which is $g(x,y) = \dfrac{(x^2+y)(y^2+x)}{(x+y-1)^2} - (x+y)$.

It seems like a good guess that $g(x,y)$ will be minimised when $y=x$ (and no doubt MarkFL would produce a "cyclic symmetry" argument to justify that). But $$g(x,x) = \frac{(x^2+x)^2 - 2x(2x-1)^2}{(2x-1)^2} = \frac{x^4 - 6x^3 + 9x^2 -2x}{(2x-1)^2} = \frac{\bigl(x^2 - 3x + \frac12\bigr)^2 - \frac14(2x-1)^2}{(2x-1)^2} = \biggl(\frac{x^2 - 3x + \frac12}{2x-1}\biggr)^2 - \frac14.$$ That has a lower bound of $-\frac14$, attained when $x$ is a root of $x^2 - 3x + \frac12$, namely $x = \frac12(3\pm\sqrt7).$

So the next step is to see whether $-\frac14$ is a lower bound for $g(x,y)$. In fact, $$g(x,y) + \frac14 = \frac{(x^2+y)(y^2+x) - \bigl(x+y-\frac14 \bigr)(x+y-1)^2}{(x+y-1)^2} = \frac{x^2y^2 - 3xy(x+y) + \frac94(x^2+y^2) + \frac{11}2xy - \frac32(x+y) + \frac14}{(x+y-1)^2}.$$ But polarising the expression in the above calculation for $g(x,x)$ gives exactly the numerator of that fraction, namely $$\bigl(xy - \tfrac32(x+y) + \tfrac12\bigr)^2 = x^2y^2 - 3xy(x+y) + \tfrac94(x^2+y^2) + \tfrac{11}2xy - \tfrac32(x+y) + \tfrac14.$$ Therefore $$g(x,y) = \biggl(\frac{xy - \tfrac32(x+y) + \tfrac12}{x+y-1}\biggr)^2 - \frac14,$$ so that $g(x,y)$ has lower bound $-\frac14$, attained when $x = y = \frac12(3\pm\sqrt7).$

The same argument applies to the other two cyclically symmetric functions $g(y,z)$ and $g(z,x)$. So the minimum value of $f(x,y,z) = g(x,y) + g(y,z) + g(z,x)$ is $-\frac34$, attained when $x = y = z = \frac12(3\pm\sqrt7).$

[/sp]

Thankyou, Opalg, for your exemplary analytical solution. You even solved the problem without using the "cyclic symmetry" argument! ;) Great!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top