Maximum Likelihood and Fisher Information

dspampi
Messages
16
Reaction score
0

Homework Statement


Let X1, X2,...Xn be a random sample from pdf,
f(x|θ) = θx-2 where 0 < θ ≤ x < ∞

Find the MLE of θMy attempt:

Likelihood fxn: L(θ|x) = ∏θx-2 = θn∏ θx-2

And to find MLE, I take Log of that function and partial derivative (w.r.t θ, of log L(θ|x) and set that = 0, and get: n/θ = 0

However, I realize that θ ≤ x and θ > 0...what do I need to do to incorporate this to my likelihood function?
In class we discuss about Fisher Information and I have a guess that it has some involvement with this problem, but I'm not sure why and what we can use Fisher Information for this problem?[/SUP][/SUP][/SUP][/SUP][/SUB][/SUB][/SUB]
 
Physics news on Phys.org
Those two bounds are absolute limits - θ cannot be zero or negative, and it cannot be larger than the smallest observed x. If your likelihood estimate gives such an unreasonable value, the maximal likelihood has to be at one of the two bounds.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top