jumbo1985
- 19
- 1
I have a particle that moves along a circular arc centered at origin in 2D plane.
I have the following angular displacement function for time T0 through T3 and the following acceleration and velocity constraints in Cartesian coordinates. At t = T0, theta = 0, velocity = 0. At t = T3, velocity = 0.
I want to calculate the maximum A_T and V_T in terms of the linear A_max and V_max quantities (A_max and V_max put a limit on A_T and V_T). I want to eventually be able to calculate T1, T2, T3.
<br /> \forall t \in [T_0, T_1]<br /> \begin{cases}<br /> \frac{d^2\theta}{dt^2}(t) = A_T \\<br /> \frac{d\theta}{dt}(t) = \dot{\theta}_{0} + A_T(t-T_0) \\<br /> \theta(t) = \theta_{0} + \dot{\theta}_{0}(t-T_0)+\frac{1}{2}A_T(t-T_0)^2 \\<br /> \end{cases}<br /> <br /> \\<br /> <br /> \forall t \in [T_1, T_2]<br /> \begin{cases}<br /> \frac{d^2\theta}{dt^2}(t) = 0 \\<br /> \frac{d\theta}{dt}(t) = V_T \\<br /> \theta(t) = \theta(T_1)+V_T(t-T_1) \\<br /> \end{cases}<br /> <br /> \\<br /> <br /> \forall t \in [T_2, T_3]<br /> \begin{cases}<br /> \frac{d^2\theta}{dt^2}(t) = -A_T \\<br /> \frac{d\theta}{dt}(t) = \dot{\theta}(T_2) - A_T(t-T_2) \\<br /> \theta(t) = \theta(T_2) + \dot{\theta}(T_2)(t-T_2) - \frac{1}{2}A_T(t-T_2)^2 \\<br /> \end{cases}<br /> \\<br /> \\<br /> \vec{A_{max}} = \begin{pmatrix}<br /> A_{max,x} \\<br /> A_{max,y} \\<br /> \end{pmatrix}<br /> \\<br /> \vec{V_{max}} = \begin{pmatrix}<br /> V_{max,x} \\<br /> V_{max,y} \\<br /> \end{pmatrix}<br /> \\<br /> \vec{Position} =<br /> \begin{pmatrix}<br /> x \\<br /> y \\<br /> \end{pmatrix} =<br /> \begin{pmatrix}<br /> \cos(\theta(t)) \\<br /> \sin(\theta(t)) \\<br /> \end{pmatrix}<br />
At first I figured I could solve
\vec A =<br /> \begin{pmatrix}<br /> \frac{d^2}{dt}[\cos(\theta(t))] \\<br /> \frac{d^2}{dt}[\sin(\theta(t))]\\<br /> \end{pmatrix}<br />
for A_T at t = T0 with all of the initial conditions applied but I'm afraid this is not correct.
How do I approach this problem?
Thanks
I have the following angular displacement function for time T0 through T3 and the following acceleration and velocity constraints in Cartesian coordinates. At t = T0, theta = 0, velocity = 0. At t = T3, velocity = 0.
I want to calculate the maximum A_T and V_T in terms of the linear A_max and V_max quantities (A_max and V_max put a limit on A_T and V_T). I want to eventually be able to calculate T1, T2, T3.
<br /> \forall t \in [T_0, T_1]<br /> \begin{cases}<br /> \frac{d^2\theta}{dt^2}(t) = A_T \\<br /> \frac{d\theta}{dt}(t) = \dot{\theta}_{0} + A_T(t-T_0) \\<br /> \theta(t) = \theta_{0} + \dot{\theta}_{0}(t-T_0)+\frac{1}{2}A_T(t-T_0)^2 \\<br /> \end{cases}<br /> <br /> \\<br /> <br /> \forall t \in [T_1, T_2]<br /> \begin{cases}<br /> \frac{d^2\theta}{dt^2}(t) = 0 \\<br /> \frac{d\theta}{dt}(t) = V_T \\<br /> \theta(t) = \theta(T_1)+V_T(t-T_1) \\<br /> \end{cases}<br /> <br /> \\<br /> <br /> \forall t \in [T_2, T_3]<br /> \begin{cases}<br /> \frac{d^2\theta}{dt^2}(t) = -A_T \\<br /> \frac{d\theta}{dt}(t) = \dot{\theta}(T_2) - A_T(t-T_2) \\<br /> \theta(t) = \theta(T_2) + \dot{\theta}(T_2)(t-T_2) - \frac{1}{2}A_T(t-T_2)^2 \\<br /> \end{cases}<br /> \\<br /> \\<br /> \vec{A_{max}} = \begin{pmatrix}<br /> A_{max,x} \\<br /> A_{max,y} \\<br /> \end{pmatrix}<br /> \\<br /> \vec{V_{max}} = \begin{pmatrix}<br /> V_{max,x} \\<br /> V_{max,y} \\<br /> \end{pmatrix}<br /> \\<br /> \vec{Position} =<br /> \begin{pmatrix}<br /> x \\<br /> y \\<br /> \end{pmatrix} =<br /> \begin{pmatrix}<br /> \cos(\theta(t)) \\<br /> \sin(\theta(t)) \\<br /> \end{pmatrix}<br />
At first I figured I could solve
\vec A =<br /> \begin{pmatrix}<br /> \frac{d^2}{dt}[\cos(\theta(t))] \\<br /> \frac{d^2}{dt}[\sin(\theta(t))]\\<br /> \end{pmatrix}<br />
for A_T at t = T0 with all of the initial conditions applied but I'm afraid this is not correct.
How do I approach this problem?
Thanks