Maxwell equations from tensor notation to component notation

  • #1
1,344
33

Homework Statement



Verify that ##\partial_{\mu}F_{\nu\lambda}+\partial_{\nu}F_{\lambda\mu}+\partial_{\lambda}F_{\mu\nu}## is equivalent to ##\partial_{[\mu}F_{\nu\lambda]}=0##,

and that they are both equivalent to ##\tilde{\epsilon}^{ijk}\partial_{j}E_{k}+\partial_{0}B^{i}=0## and ##\partial_{i}B^{i}=0##.

Homework Equations



The Attempt at a Solution



##\partial_{[\mu}F_{\nu\lambda]}=0##

##\implies \frac{1}{3!}(\partial_{\mu}F_{\nu\lambda}-\partial_{\mu}F_{\lambda\nu}-\partial_{\nu}F_{\mu\lambda}+\partial_{\nu}F_{\lambda\mu}-\partial_{\lambda}F_{\nu\mu}+\partial_{\lambda}F_{\mu\nu})=0##, using the definition of antisymmetrization of a tensor

##\implies \partial_{\mu}F_{\nu\lambda}-\partial_{\mu}F_{\lambda\nu}-\partial_{\nu}F_{\mu\lambda}+\partial_{\nu}F_{\lambda\mu}-\partial_{\lambda}F_{\nu\mu}+\partial_{\lambda}F_{\mu\nu}=0##

##\implies \partial_{\mu}F_{\nu\lambda}+\partial_{\mu}F_{\nu\lambda}+\partial_{\nu}F_{\lambda\mu}+\partial_{\nu}F_{\lambda\mu}+\partial_{\lambda}F_{\mu\nu}+\partial_{\lambda}F_{\mu\nu}=0##

##\implies 2(\partial_{\mu}F_{\nu\lambda}+\partial_{\nu}F_{\lambda\mu}+\partial_{\lambda}F_{\mu\nu})=0##

##\implies \partial_{\mu}F_{\nu\lambda}+\partial_{\nu}F_{\lambda\mu}+\partial_{\lambda}F_{\mu\nu}=0##

Is my working so far correct?
 

Answers and Replies

  • #2
TSny
Homework Helper
Gold Member
12,965
3,322
Yes, I believe so.
 

Related Threads on Maxwell equations from tensor notation to component notation

Replies
5
Views
1K
  • Last Post
Replies
7
Views
2K
  • Last Post
Replies
4
Views
1K
  • Last Post
Replies
1
Views
2K
Replies
4
Views
765
  • Last Post
Replies
8
Views
5K
Replies
17
Views
2K
  • Last Post
Replies
4
Views
2K
Replies
3
Views
963
Top