- #1
- 1,344
- 33
Homework Statement
Verify that ##\partial_{\mu}F_{\nu\lambda}+\partial_{\nu}F_{\lambda\mu}+\partial_{\lambda}F_{\mu\nu}## is equivalent to ##\partial_{[\mu}F_{\nu\lambda]}=0##,
and that they are both equivalent to ##\tilde{\epsilon}^{ijk}\partial_{j}E_{k}+\partial_{0}B^{i}=0## and ##\partial_{i}B^{i}=0##.
Homework Equations
The Attempt at a Solution
##\partial_{[\mu}F_{\nu\lambda]}=0##
##\implies \frac{1}{3!}(\partial_{\mu}F_{\nu\lambda}-\partial_{\mu}F_{\lambda\nu}-\partial_{\nu}F_{\mu\lambda}+\partial_{\nu}F_{\lambda\mu}-\partial_{\lambda}F_{\nu\mu}+\partial_{\lambda}F_{\mu\nu})=0##, using the definition of antisymmetrization of a tensor
##\implies \partial_{\mu}F_{\nu\lambda}-\partial_{\mu}F_{\lambda\nu}-\partial_{\nu}F_{\mu\lambda}+\partial_{\nu}F_{\lambda\mu}-\partial_{\lambda}F_{\nu\mu}+\partial_{\lambda}F_{\mu\nu}=0##
##\implies \partial_{\mu}F_{\nu\lambda}+\partial_{\mu}F_{\nu\lambda}+\partial_{\nu}F_{\lambda\mu}+\partial_{\nu}F_{\lambda\mu}+\partial_{\lambda}F_{\mu\nu}+\partial_{\lambda}F_{\mu\nu}=0##
##\implies 2(\partial_{\mu}F_{\nu\lambda}+\partial_{\nu}F_{\lambda\mu}+\partial_{\lambda}F_{\mu\nu})=0##
##\implies \partial_{\mu}F_{\nu\lambda}+\partial_{\nu}F_{\lambda\mu}+\partial_{\lambda}F_{\mu\nu}=0##
Is my working so far correct?