MCNP4C: efficiency calculation

lingleo
Messages
3
Reaction score
0
Any one familiar with MCNP4C efficiency calculation can help me with this?
My cal. result for 1.836MeV(e.g.) is always small (6.16447E-05 ) compared to it should be(3.78E-004 by a professional business software), here is the inp file, is there anything wrong with the geometry define or source or tally card?
Thank you very much!
******************************************************
---Cal of NaI sensitivity to be compared with Labsocs results
c cells
1 1 1.0 (1 -7 -12)#(1 -6 -11) imp:P=1
2 2 -7.86 (1 -6 -11)#(1 -5 -10) imp:P=1
3 3 -3.67 3 -4 -9 imp:P=1
4 4 -2.7 (2 -5 -10)#3 imp:P=1
5 5 -1.293e-3 -14 #1#2#3#4 imp:P=1
6 0 14 IMP:P=0

c surfaces(cm)
1 PY 0
2 PY 19.2
3 PY 19.56
4 PY 24.64
5 PY 25
6 PY 26
7 PY 41
9 CY 2.54
10 CY 2.9
11 CY 3.9
12 CY 20
14 SY 20.5 30

mode P
sdef cel=1 erg=D1 pos=0 0 0 axs=0 1 0 rad=D2 ext=D3 EFF=0.01
c for comparement
SI1 L 1.83608
c SI1 L 1.33249
c SI1 L 1.17322
c SI1 L 0.898
c SI1 L 0.66165
c SI1 L 0.514
SP1 D 1
SI2 0 20.6
SI3 -0.1 41.1
c M1 is H2O
M1 1001 0.6667 8016 0.3333 92235 0.966e-6
c M2 is Fe
M2 26056 1
c M3 is NaI
M3 11023 0.5 53127 0.5
c M4 is Al
M4 13027 1
c M5 is air
M5 8016 -0.231 7014 -0.7506 18040 -0.1286
F8:P 3
E8 0 1e-5 1 10I 1.8355 7I 1.8362
c E8 0 1e-5 1 10I 1.3321 7I 1.3328
c E8 0 1e-5 1 10I 1.1725 9I 1.1735
c E8 0 1e-5 0.1 10I 0.891 9I 0.901
c E8 0 1e-5 0.1 10I 0.510 9I 0.515
c E8 0 1e-5 0.1 10I 0.3910 9I 0.3920
c E8 0 1e-5 0.05 10I 0.3195 9I 0.3205
c E8 0 1e-5 0.05 10I 0.1582 9I 0.1592
c E8 0 1e-5 0.1 10I 0.6612 9I 0.6622
c E8 0 1e-5 0.01 13I 0.14 40I 0.145 0.15
c E8 0 1e-5 0.14366 11I 0.14378.
c E8 0 1e-5 0.05 0.1 10I 0.2045 9I 0.2055
c E8 0 1e-5 0.05 0.1 0.1850 9I 0.1860
c T6 0 10I 660e8
c fq6 t e
CTME 20
*******************************************************
 
Physics news on Phys.org
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top