MHB Mean and standard deviation and probability

tcardwe3
Messages
6
Reaction score
0
I did the problem but none of my answers match up with the answer choices so I'm obviously doing it wrong. Can someone show me how to do these two problems. I have a test coming up and I am so behind

For women aged 18-24, the systolic blood pressure (in hg mm) are normally distributed with a mean of 114.8 and a standard deviation of 13.1
100 women between 18 and 24 are randomly selected, let t represent the systolic pressure of 100 women
-Find the mean and standard deviation of t
a) 114.8, 131
b) 114.8, 13.1
c) 114.8, 1.31
d) 11.48, 1.31
d) 11.48, 1.31

-What is the probability that the mean systolic blood pressure t is between 112.2 and 116.4
a) .8649
b) .3879
c) .1578
d) .571
e) .0324
 
Mathematics news on Phys.org
[box=red]
Sampling Distribution of a Normal Variable

Given a random variable $$X$$. Suppose that the population distribution of $$X$$ is known to be normal, with mean $\mu$ and variance $\sigma^2$, that is, $X\sim N(\mu,\sigma)$. Then, for any sample size $n$, it follows that the sampling distribution of $X$ is normal, with mean $\mu$ and variance $\dfrac{\sigma^2}{n}$, that is, $\overline{X}\sim N\left(\mu,\dfrac{\sigma}{\sqrt{n}}\right)$[/box]

Based on this, what would you say the correct answer to the first part of the problem is?
 
For the second part of the question.

$\displaystyle P\left(112.2<\bar{T}<116.4\right) = P\left(\frac{112.2-\mu}{\frac{\sigma}{\sqrt{n}}}<Z<\frac{116.4-\mu}{\frac{\sigma}{\sqrt{n}}}\right)= \cdots$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
1K
Replies
1
Views
2K
Replies
1
Views
4K
Replies
1
Views
2K
Replies
1
Views
3K
Back
Top