Measuring Reaction Time Using Velocity-Time Graphs

AI Thread Summary
To find reaction time from a velocity-time graph, one must identify the period of constant or increasing velocity before deceleration begins. Reaction time is defined as the interval between the driver noticing a stimulus and applying the brakes. This can be calculated by analyzing the graph, particularly the segment where velocity remains constant at 1.5 m/s. The transition from constant velocity to decreasing velocity indicates the moment the driver reacts. Understanding these concepts is crucial for accurately measuring reaction time in automotive scenarios.
HELP_ME123
Messages
5
Reaction score
0
Reaction Time?

how can you find reaction time from a velocity time graph? anyone knows i need an answer asap thanks a lot =).
 
Physics news on Phys.org
by the way the veloctiy is 1.5 m/s and starts directly on the y axis
 
Please only post once. Thanks.

Also please show some work and effort.

One would have to elaborate, and also explain what is meant by 'reaction time'.

In automotive operation, reaction time is the time that the driver sees something that initiates the braking action and the time that the brake is applied. That time period could be discerned with a period of constant or increasing velocity, with the assumption that decreasing velocity occurs when 1) the accelerator is released and 2) the brake is applied.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top