Mechanical Engineering, real-world adv. math applications?

Click For Summary
SUMMARY

Mechanical Engineering (ME) relies heavily on advanced mathematical concepts, particularly linear algebra and differential equations, although direct application in the workplace may be less frequent than expected. Graduates often utilize fundamental principles rather than complex calculations, with many finding real-world applications to be more straightforward than academic exercises. Exposure to advanced mathematics is crucial for developing abstract thinking skills essential for engineering problem-solving. The consensus among professionals is that while advanced math may not be used daily, it fosters critical thinking and analytical skills necessary for success in the field.

PREREQUISITES
  • Understanding of linear algebra concepts
  • Familiarity with differential equations
  • Basic knowledge of calculus
  • Exposure to engineering principles such as strength of materials and fluid dynamics
NEXT STEPS
  • Research applications of linear algebra in mechanical systems
  • Explore the role of differential equations in modeling physical phenomena
  • Study the fundamentals of elasticity theory in engineering contexts
  • Investigate how abstract mathematical concepts enhance problem-solving skills in engineering
USEFUL FOR

Mechanical engineering students, recent graduates, and professionals seeking to understand the practical applications of advanced mathematics in engineering careers.

Timb0Slice
Messages
9
Reaction score
0
Currently pursuing a degree in Mechanical Engineering, and commonly ponder about how much of this semi-abstract math I will actually be using the workplace. I have heard real-world ME relies pretty heavily on linear algebra and differential equations.

As far as advanced Calculus goes I understand the fundamentals are important but I can't imagine having to use some of these techniques to find volumes of abstract 3D objects. I would assume in much 3D modeling, the program takes care of the bulk of things (unfortunate for the program designers). I can see simple deriving and integrating could become useful in physics applications.

I'm just talking strictly math here. Obviously strength of materials, vibrations, and fluids are all very practical and all incorporate math specifically. My question is focused on any math outside of remembering equations and plugging and chugging.

Obviously it will differ from specific careers, but just curious if any current ME's could shed some light on how much and how dense the advanced math use is in the workplace today. Much appreciated.
 
Physics news on Phys.org
The worst thing you can think about whilst doing your degree is "Am i ever even going to use this".. I hear it all the time, and has become a bit of pet hate.

Remember that sometimes you aren't taught certain things simply because of how important they are in the workforce. Rather you are taught things which all accumulate towards you being able to think in a certain way.

Consider the case of a high school student who is looking to pursue Journalism as a career, and all the abstract math they learn during school is considered a 'waste'. While it's true that this student may not directly apply the technical math discovered in high school, the student will have gained the ability to think logically, and rationally.

Timb0Slice said:
My question is focused on any math outside of remembering equations and plugging and chugging.

If you think math is anything to do with remembering equations and plugging and chugging, then you're thinking about it in the wrong way.
 
Last edited:
  • Like
Likes   Reactions: billy_joule
I fully agree with Joppy's response. A long long time ago when I was
in grad school, I took a course in Elasticity theory where the prof would fill up blackboards on three sides of the room (using chalk, not computers) with messy partial differential equations to solve the problem. I remember thinking that if I had to do this heavy math repeatedly in my career, then I wanted out. Well, in my engineering jobs over the decades, I've never had to use a partial differential equation, but that in no way means that the course was a waste of my time and energy. Knowledge and exposure to some higher levels of math is essential in engineering, even though you may never use it directly. Joppy explained it well.
And if you think engineering may just be 'plug and chug', think again. It's nothing like that.
 
I completely agree with both of you. I should have elaborated more when I said "I understand the fundamentals are important". I had in a way meant "learning to think abstractly". That's one of the things that draws me to engineering so strongly is the almost "different level of consciousness" that engineers are in.

My question was more focus on what PhanthomJay had said about wanting out, if the rest of my life would be obnoxiously long equations calculations. But I absolutely appreciate both of your inputs. I suppose these classes also do a good job weeding out those students who are not motivated enough to make an impact in the workplace either.
 
I don't think you've got anything to worry about : ).

I am a student still and don't have any industry experience. But from speaking to friends who have graduated and are now working as engineers, i am always told that they are usually just applying the fundamentals, and in some cases, it's 'easier' than university.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
Replies
16
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
11
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 22 ·
Replies
22
Views
5K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
925
  • · Replies 4 ·
Replies
4
Views
2K