Merry go round angular velocity problem asap help needed

AI Thread Summary
The discussion revolves around calculating the angular velocity of a mass-less merry-go-round after a 40kg child jumps onto it while a 30kg child is already seated. Participants clarify that angular momentum is conserved, and the initial angular momentum should be calculated based on the 40kg child's linear momentum before landing. The moment of inertia of the merry-go-round is considered negligible since it is massless, leading to the conclusion that only the children's masses contribute to the system's inertia. The correct approach involves summing the moment of inertia of both children and using this to find the angular velocity after the jump. The importance of qualitative sketches for momentum vectors is also emphasized, focusing on direction rather than magnitude.
helpneed
Messages
7
Reaction score
0
A merry-go-round consists of a flat circular disk mounted on a bearing at the center allowing it to freely rotate. Consider a mass-less merry-go-round with a 4 meter diameter.
Initially a 30kg child sits at the east edge of the stationary merry-go-round. A second child with a mass of 40kg runs north at a speed of 10km/hour, jumps and lands on the west edge of the merry-go-round making it turn.
a) Make a sketch of problem during the jump when the 40kg child is in the air traveling at 10km/h north indicating the linear momentum vector (qualitatively only)
b) Make a sketch of the merry-go-round after it is turning indicating the angular momentum vector (qualitatively only)

c)Find the magnitude of the angular velocity vector of the turning merry-go-round.


I don;t expect anyone to sketch the first a and b problems
but it would help of you can tell me what what the linear momentum vector looks like.
i don't really understand the whole qualitatively part.

for c
i tried but i think i failed.

i used KE=p/2m
i got KE= 1.35 J

then used KE=IW^2/2
I=mr^2
so 1.35=((70)(2)^2)(W)/2
so W(angular velocity)= 0.00964rad/s

but I am pretty sure i am soo wrong because its asking for magnitude of the angular velocity. which is far from my thoughts.
 
Physics news on Phys.org
This is not an energy-conservation problem. Energy is going to be lost. However, there are no sources of external torque in this problem, so angular momentum will be conserved.

Simply compute angular momentum of the 40kg child about merry-go-round's center right before said child grabs on. Then figure out what the angular velocity of both children together will be with that much angular momentum.

For the sketch problems, in this case, qualitatively just means they want you to show the directions of vectors. Not magnitudes.
 
K^2 said:
This is not an energy-conservation problem. Energy is going to be lost. However, there are no sources of external torque in this problem, so angular momentum will be conserved.

Simply compute angular momentum of the 40kg child about merry-go-round's center right before said child grabs on. Then figure out what the angular velocity of both children together will be with that much angular momentum.

For the sketch problems, in this case, qualitatively just means they want you to show the directions of vectors. Not magnitudes.

so i should get the angular momentum of both the children separately and then add them together. but i don't know how i would go about doing that. with only the information given.
 
If you draw a straight line along with a body is moving, the distance of fulcrum from that line is the effective arm. To get angular momentum, you take linear momentum and multiply it by that arm. This is easiest way to find initial angular momentum.

Alternatively, angular momentum is given by moment of inertia times angular velocity. You can use this definition to obtain angular velocity from angular momentum.
 
K^2 said:
If you draw a straight line along with a body is moving, the distance of fulcrum from that line is the effective arm. To get angular momentum, you take linear momentum and multiply it by that arm. This is easiest way to find initial angular momentum.

Alternatively, angular momentum is given by moment of inertia times angular velocity. You can use this definition to obtain angular velocity from angular momentum.

so i should get the moment of inertia of the merry go round add it to the inertia of the two people and then divide the angular momentum by the inertia to get the magnitude of the angular velocity. okay.
 
helpneed said:
so i should get the moment of inertia of the merry go round add it to the inertia of the two people and then divide the angular momentum by the inertia to get the magnitude of the angular velocity. okay.

The merry-go-round is massless. So what is its moment of inertia?
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top