Basic Idea: You can find ##\displaystyle\sum_{k=1}^n k^{p+1}## if you know ##\displaystyle\sum_{k=1}^n k^{p}## , for ##p\in\{0,1,2,\ldots\}##.
Procedure: (for ##p=1##)
We know that (Why?) $$\sum_{k=1}^n k^1=\frac{n(n+1)}2.\tag1$$ We also know that $$(k+1)^3-n^3=3n^2+3n+1.$$ Writing this formula for ##k=1,2,\ldots,n## we get:
$$
\begin{array}{rcl}
2^3-1^3 & = & 3\cdot1^2+3\cdot1+1\qquad \\
3^3-2^3 & = & 3\cdot2^2+3\cdot2+1 \\
\cdot\,\ \quad & & \\
\cdot\,\ \quad & & \\
\cdot\,\ \quad & & \\
\quad(n+1)^3-n^3 & = & 3\cdot n^2+3\cdot n+1 \\ \hline
(n+1)^3-1^3 &=&3[1^2+2^2+\cdots+n^2]+3[1+2+\cdots+n]\\&&\qquad\qquad+[\underbrace{1+1+\cdots+1}_{n\,\text{times}}]
\end{array}$$ This last equality can be simplified using ##(1)## to get: $$(n+1)^3-1=3\sum_{k=1}^n k^2+3\frac{n(n+1)}2+n.$$ We need to solve this equation for ##\displaystyle\sum_{k=1}^n k^2## to get our desired result: $$\begin{align*}
(n+1)^3-1=3\sum_{k=1}^n k^2+3\frac{n(n+1)}2+n&\iff n^3+3n^2+3n=3\sum_{k=1}^n k^2+3\frac{n(n+1)}2+n\\
&\iff n^3+3n^2+3n-3\frac{n(n+1)}2-n=3\sum_{k=1}^n k^2\\
&\iff n^3+3n^2+2n-\frac{3n(n+1)}2=3\sum_{k=1}^n k^2\\
&\iff \frac{2n^3+6n^2+4n}{2}-\frac{3n^2+3n}2=3\sum_{k=1}^n k^2\\
&\iff\frac{2n^3+3n^2+n}2=3\sum_{k=1}^n k^2\\
&\iff\frac{2n^3+3n^2+n}{2}\frac13=\sum_{k=1}^n k^2\\
&\iff\frac{2n^3+3n^2+n}{6}=\sum_{k=1}^n k^2\\
&\iff\sum_{k=1}^n k^2=\frac{n^3}3+\frac{n^2}2+\frac n6\\
\end{align*}$$
Now substitute ##n## with ##n-1## to get your desired formula.
N.B: This is (overall) the same method Apostol uses to evaluate ##\displaystyle\sum_{k=1}^n k^{2}## , you just had to look further in the text

, see Calculus vol.I, pp.5-6.
Exercise: Find ##\displaystyle\sum_{k=1}^n k^{3}##, ##\displaystyle\sum_{k=1}^n k^{4}## and ##\displaystyle\sum_{k=1}^n \frac1{k(k+1)}## using this method. Good luck!
