Metric of 2 Bodies: Superposition & Resulting Tensor

  • Thread starter Thread starter tarquinius
  • Start date Start date
  • Tags Tags
    bodies Metric
tarquinius
Messages
11
Reaction score
0
Hello there. I would like to find the metric tensor produced by the existence of two massive bodies. Does the principle of superposition work for metrics as well? The first idea I got was to add the two metrics for each separate body in order to obtain the resulting one. Is this approach valid? I should be grateful for any help.
 
Physics news on Phys.org
tarquinius, If you really mean two free particles, the solution will be quite complicated since they will accelerate toward each other, emitting gravitational radiation, and eventually coalesce. The problem can only be solved numerically.

Otherwise a static Weyl solution exists that has two point masses held a fixed distance apart by a nonphysical strut.
 
And does this Weyl solution work the way I have described above? Would it be possible to just add the metric of each body in order to obtain the resulting one?
 
You can't add the solutions together, at least not in strong fields, because the equations aren't linear.
 
OK. That's what I expected. I just wanted to be sure that the resulting metric can't be produced in such a simply way before starting deriving the tensor from the field equation.
 
Here, courtesy of Google books, is a description of the Weyl solutions. They comprise all static axially symmetric vacuum solutions, and are described by an axially symmetric solution U of Laplace's equation in a flat 3-space. Although Laplace's equation is linear, and you can superpose solutions in that sense, there are other terms in the metric which depend on U in a nonlinear fashion.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top