ghwellsjr
Science Advisor
Gold Member
- 5,122
- 150
Great questions, I'm glad I get the chance to answer them. Please note that we are talking here about two theories as opposed to experimental measurements which those theories explain. These two theories have as their foundation the abstract concept of frames of reference which are co-ordinate systems (spatial and time components) to enable us to deal with bigger situations than what we could deal with if we limited ourselves to just the data from experimental measurements.roineust said:Hey ghwellsjr,ghwellsjr said:The only difference between LET and SR is that LET postulates that there exists a single absolute ether rest frame in which the one-way speed of light is the same in all directions and SR postulates that in any inertial frame the one-way speed of light is the same in all directions, (but only one at at time). Ocam's razor prefers SR because it frees you up from trying to find that single illusive ether rest frame--any inertial frame will do.
No, unless you want to abandon SR, which I seriously doubt.
Still didn't forget the exercise...I will get there soon.
I have a question: What do you mean by "...(but only one at a time)...": one frame at a time, right? if you mean one frame at a time, does this restriction have a name? is it a result of an equation? or of an experiment? what is it called? what is the reason for it? what is the problem with having the speed of light the same at all frames at a once?
Thanks,
Roi.
So now let's lay aside the issue of these two theories and focus on experimental measurements. It turns out that any inertial observer (without any consideration for a frame) who attempts to measure the speed of light will get the constant value c, no matter which direction the measurement is made. Any number of inertial observers moving with respect to each other will get the same result simultaneously for similar experiments. Futhermore, if any number of these observers send similar timing signals between each other, they will each observe that the other one's timers are running slower than their own and by the same amount. If two inertial observers in relative motion happen to be co-located at the moment a flash of light is emitted, they will both observe that they are each located in the center of that expanding flash of light. There are many other experiments that can be performed of this nature that have nothing to do with any frames of reference--it's just the way nature works.
Now we'll look at how frames of reference enter into the picture. In an attempt to understand the apparent strange way that nature works, scientists have come up with theories:
In one of these, Lorentz Ether Theory (LET), it is postulated that there exists only a single absolute frame of reference in which light actually travels in all directions at the speed c and only when you are at rest in that frame will your measurements reflect what is really happening. All other inertially moving observers get the same results because nature is playing tricks on them by adjusting their clocks and rulers in such a way that they get the same results as they would get if they were stationary in the ether. In fact, since we don't know where the ether rest frame is, chances are, all observers are not at rest in the ether frame and so it's a safe bet that we all have our clocks and rulers modified.
Special Relativity, SR, on the other hand, postulates that you can consider anyone of the inertial observers to be at rest in the ether frame of reference where his measurements reflect what is really going on and all the other inertially moving observers are getting their clocks and rulers modified by nature in such a way that they get the same result as they would if they were at rest in the ether but the theory says that their clocks and rulers are actually getting modified, according to the one observer which we are considering to be at rest in the ether.
The theories include methods by which we can assign values to locations and clocks that include all observers and objects so that we can transform a scenario defined according to one frame of reference into any other frame of reference. We can even transform or define a frame of reference where there is no observer or object. The important thing to consider here is that you should not use the values for locations or times from two different frames and thereby see a contradiction--that's what all the so-called paradoxes do--you need to use only one frame at a time, it doesn't matter which one.
Last edited:
you are right here, I did a too hasty copy-paste without checking the result - sorry for that! Regretfully I thus added to confusion, and I can likely not delete my mis-citation... 