I Microsoft Mathematics: Calculate EM Energy Momentum Tensor

  • I
  • Thread starter Thread starter George Keeling
  • Start date Start date
  • Tags Tags
    Mathematics
George Keeling
Gold Member
Messages
180
Reaction score
41
TL;DR Summary
I just found Microsoft mathematics. Useful for matrix manipulation and more
fresh_42 said:
Have a look on
https://www.physicsforums.com/threa...th-and-other-curiosities.970262/#post-6164027and write me a message if you found a better one, please.
Here's something that maybe should go in the list and here are the pros and cons:

I was recently doing a problem which involved calculating the electromagnetic energy momentum tensor$$
T^{\mu\nu}=F^{\mu\lambda}F_{\ \ \ \lambda}^\nu-\frac{1}{4}\eta^{\mu\nu}F^{\lambda\sigma}F_{\lambda\sigma}
$$In a previous problem I had already calculate$$
F_{\mu\nu}=\left[\begin{matrix}0&-E_1&-E_2&-E_3\\E_1&0&B_3&-B_2\\E_2&-B_3&0&B_1\\E_3&B_2&-B_1&0\\\end{matrix}\right],\ F_{\ \ \ \lambda}^\nu=\eta^{\nu\rho}F_{\rho\lambda}=\left[\begin{matrix}0&E_1&E_2&E_3\\E_1&0&B_3&-B_2\\E_2&-B_3&0&B_1\\E_3&B_2&-B_1&0\\\end{matrix}\right]
$$
and$$
F^{\mu\nu}=F_{\ \ \ \lambda}^\mu\eta^{\lambda\nu}=\left[\begin{matrix}0&E_1&E_2&E_3\\-E_1&0&B_3&-B_2\\-E_2&-B_3&0&B_1\\{-E}_3&B_2&-B_1&0\\\end{matrix}\right]
$$I was using ##c=1## and metric signature ##-++++##
So I had to do a bit of unpleasant matrix multiplication. I found Microsoft Mathematics (https://www.microsoft.com/en-us/download/details.aspx?id=15702) useful. It successfully tells me that $$
F^{\mu\lambda}F_{\ \ \ \lambda}^\nu=\left[\begin{matrix}{E_1}^2+{E_2}^2+{E_3}^2&B_3E_2-B_2E_3&B_1E_3-B_3E_1&B_2E_1-B_1E_2\\B_3E_2-B_2E_3&{B_2}^2+{B_3}^2-{E_1}^2&-B_1B_2-E_1E_2&-B_1B_3-E_1E_3\\B_1E_3-B_3E_1&-B_1B_2-E_1E_2&{B_1}^2+{B_3}^2-{E_2}^2&-B_2B_3-E_2E_3\\B_2E_1-B_1E_2&-B_1B_3-E_1E_3&-B_2B_3-E_2E_3&{B_1}^2+{B_2}^2-{E_3}^2\\\end{matrix}\right]
$$
(without working out that ##{E_1}^2+{E_2}^2+{E_3}^2=E##) and was good at the other bits. The above matrix will easily paste back into a MS-Word equation. Sadly one cannot paste matrices from Word into it.

Subscripted variables can easily be entered as E_x becomes ##E_x##. Greek letters are allowed too. Superscripts are always exponents. It also does differentiation, integration and quite a bit more which I have not explored.

It has some drawbacks on my computer at least.

As mentioned I was unable to copy/paste matrices from MS-Equations into MS-Mathematics, so all the data entry must be done in the latter. There is an addin which might do the trick. It's at https://www.microsoft.com/en-US/download/details.aspx?id=36777 but it did not like my version of Word (Office 365). The main install program, crashed when it came to the addin part.

The 'keyboard' is tiny and the seven choices of colours are demented. For some reason the image below is larger than actual size.
MS Maths.png
 
Last edited:
  • Like
Likes WWGD
Physics news on Phys.org
George Keeling said:
Summary:: I just found Microsoft mathematics. Useful for matrix manipulation and more

Here's something that maybe should go in the list and here are the pros and cons:
Maybe, but it is of a different quality. It is a download, not an online tool. If we started listing useful tools we would probably be worse than the many download sites which already exist. And it is likely dependent on the OS.
 
  • Like
Likes George Keeling
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top