 #1
 1,380
 22
Homework Statement
Homework Equations
Minimum/Maximum occurs when the first derivative=0
The Attempt at a Solution
$$l_1^2+l_2^2=(a^2+x^2)+[b^2+(dx)^2]=a^2+b^2+x^2+\left[ \sqrt{c^2(ba)^2}x \right]^2$$
$$(l_1^2+l_2^2)'=2x+2\left[ \sqrt{c^2(ba)^2}x \right](1)$$
$$(l_1^2+l_2^2)'=0~~\rightarrow~~x=\frac{1}{2}\sqrt{c^2(ba)^2}=\frac{d}{2}$$
The minimum (or maximum?) distance is when the station is in the middle of the vertical distance between the cities
The total pipe's distance is:
$$Dist=\sqrt{l_1}+\sqrt{l_2}=\sqrt{a^2+x^2}+\sqrt{b^2+x^2}=\sqrt{a^2+\frac{d^2}{4}}+\sqrt{b^2+\frac{d^2}{4}}$$
It doesn't give ##~\sqrt{c^24ab}##
Attachments

24.7 KB Views: 364

5.2 KB Views: 378