autre
- 116
- 0
Homework Statement
Let f(a)=\frac{1}{n-1}\sum_{i=1}^{n}(x_{i}-a)^{2}
Find the value of a that minimizes f(a) by replacing (x_{i}-a) by ((x_{i}-\bar{x})+(\bar{x}-a)).
2. The attempt at a solution
f(a)=\frac{1}{n-1}\sum_{i=1}^{n}((x_{i}-\bar{x})+(\bar{x}-a))^{2}=\frac{1}{n-1}\sum_{i=1}^{n}((x_{i}-\bar{x})^{2}+(\bar{x}-a){}^{2}+2(x_{i}-\bar{x})(\bar{x}-a))=\frac{1}{n-1}[\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}+\sum(\bar{x}-a){}^{2}+\sum2(x_{i}-\bar{x})(\bar{x}-a)]
I'm a little stuck here. Any ideas?