Hi,
thanks for your response. Here are some more details on the problem (sorry that
I didn't give them in the first post):
the surface is defined as follows:
surf=Interpolation[{
{{150.0, 150.0}, 3.096864},
{{150.0, 160.0}, 3.046994},
{{150.0, 170.0}, 3.009620},
{{150.0, 180.0}, 2.989012},
{{150.0, 190.0}, 2.986530},
{{150.0, 200.0}, 3.002286},
{{150.0, 210.0}, 3.035953},
{{160.0, 150.0}, 3.086955},
{{160.0, 160.0}, 3.034026},
{{160.0, 170.0}, 2.998120},
{{160.0, 180.0}, 2.981648},
{{160.0, 190.0}, 2.983551},
{{160.0, 200.0}, 3.003376},
{{160.0, 210.0}, 3.041179},
{{170.0, 150.0}, 3.071875},
{{170.0, 160.0}, 3.020885},
{{170.0, 170.0}, 2.987889},
{{170.0, 180.0}, 2.973381},
{{170.0, 190.0}, 2.978328},
{{170.0, 200.0}, 3.003711},
{{170.0, 210.0}, 3.046983},
{{180.0, 150.0}, 3.059369},
{{180.0, 160.0}, 3.011611},
{{180.0, 170.0}, 2.980452},
{{180.0, 180.0}, 2.968498},
{{180.0, 190.0}, 2.978878},
{{180.0, 200.0}, 3.008716},
{{180.0, 210.0}, 3.055378},
{{190.0, 150.0}, 3.050455},
{{190.0, 160.0}, 3.006078},
{{190.0, 170.0}, 2.979718},
{{190.0, 180.0}, 2.973050},
{{190.0, 190.0}, 2.985642},
{{190.0, 200.0}, 3.017429},
{{190.0, 210.0}, 3.067576},
{{200.0, 150.0}, 3.044132},
{{200.0, 160.0}, 3.005296},
{{200.0, 170.0}, 2.984163},
{{200.0, 180.0}, 2.980781},
{{200.0, 190.0}, 2.995990},
{{200.0, 200.0}, 3.030428},
{{200.0, 210.0}, 3.082939},
{{210.0, 150.0}, 3.038026},
{{210.0, 160.0}, 3.003644},
{{210.0, 170.0}, 2.986792},
{{210.0, 180.0}, 2.988001},
{{210.0, 190.0}, 3.007861},
{{210.0, 200.0}, 3.044050},
{{210.0, 210.0}, 3.093928}
},Method->Spline]
f=Function[{a,b},surf[a,b]]
The path (curve) I want to find (plot) can be looked upon as a trajectory for a particle
(m=1) that starts moving on the above surface from (a0=180.0 , b0=180.0) with some initial velocity v_init={0; v_b}, i.e. the particle has some initial impulse only along coordinate b; along coordinate a it is 0. At a certain v_init the particle should proceed along the so-called minimum energy path (MEP) for b, which I want to find. (f is basically the potential energy surface).
The surface f(a,b) is "bound" (has a parabolic form) from {180.0,180.0}
till {~198.9, ~159.8}. The latter point is an inflection point for coordinate a. I have defined the MEP for b from {180.0,180.0} till {~198.9, ~159.8} by simply finding
the minimum of f(a,b) for b varying from 180.0 till 159.8. For b<159.8 this doesn't work because here f is "unbound" with respect to a.
Well, I think the easeist way to find MEP for b is to run trajectories for a few different
v_init to find its optimimal value, i.e. the minimal value of v_init at which the particle
moves only forward along b.
(Sorry if it is still not entirely clear)
Evgeniy