Minimum time window needed to capture frequencies

Mindscrape
Messages
1,854
Reaction score
1
I'm pretty sure there have to be some theorems out there, but I am probably not putting in the right search terms to be able to find them. Here's the problem:

I have a signal uniquely composed of a finite summation of standing wave sinusoids (well there's some DC and other background, but let's ignore those). Let's say I sample at some rate NT, and that my highest frequency is NT/2 (so I'm good on Nyquist). However, let's also say that I can only watch this signal for some time \tau, so I'm really only detecting \tau=NTp (where p is number of samples) time overall.

So let's actually ignore the discrete time samples for a second, in continuous time I would see
g(t)=\sum_{N=1}^p \cos(\frac{2\pi \nu t}{N})

So on one hand, how much time do I have to sample for to pick out all the correct frequencies. But, additionally, given that I am actually only measuring steps of NT seconds (sample and hold) does this affect the consequences of having a finite time window to measure all these beats correctly. Spectral leakage is pretty close to what I'm looking for, but not quite.
 
Mathematics news on Phys.org
You get p equations, so in general you can solve for p unknown variables. As you limit your highest frequency in the right way, I would expect that the system always has a unique solution (even if it might be ugly in terms of numerics). It's a different question if that solution corresponds to your actual signal, that will depend on the type of waves you fit to the data points.
 
The phrase "pick out" frequencies is misleading. Assume that all frequencies are below the Nyquist frequency. Given an infinite time to sample, the amplitude errors for the frequencies will be 0. Given less time, the amplitude uncertainty will be larger. So "pick out" is not the right way to say it. They will be detected, but with amplitude uncertainty. I can not remember the name for sampling within a time window. Maybe someone can help.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top